McCaffrey Daniel F, Bell Robert M
The RAND Corporation, Pittsburgh, PA 15213, USA.
Stat Med. 2006 Dec 15;25(23):4081-98. doi: 10.1002/sim.2502.
The sandwich standard error estimator is commonly used for making inferences about parameter estimates found as solutions to generalized estimating equations (GEE) for clustered data. The sandwich tends to underestimate the variability in the parameter estimates when the number of clusters is small, and reference distributions commonly used for hypothesis testing poorly approximate the distribution of Wald test statistics. Consequently, tests have greater than nominal type I error rates. We propose tests that use bias-reduced linearization, BRL, to adjust the sandwich estimator and Satterthwaite or saddlepoint approximations for the reference distribution of resulting Wald t-tests. We conducted a large simulation study of tests using a variety of estimators (traditional sandwich, BRL, Mancl and DeRouen's BC estimator, and a modification of an estimator proposed by Kott) and approximations to reference distributions under diverse settings that varied the distribution of the explanatory variables, the values of coefficients, and the degree of intra-cluster correlation (ICC). Our new method generally worked well, providing accurate estimates of the variability of fitted coefficients and tests with near-nominal type I error rates when the ICC is small. Our method works less well when the ICC is large, but it continues to out-perform the traditional sandwich and other alternatives.
三明治标准误差估计器通常用于对作为聚类数据广义估计方程(GEE)解的参数估计进行推断。当聚类数量较少时,三明治估计往往会低估参数估计的变异性,并且通常用于假设检验的参考分布不能很好地近似 Wald 检验统计量的分布。因此,检验的 I 型错误率高于名义水平。我们提出了使用偏差减少线性化(BRL)的检验方法,以调整三明治估计器,并对所得 Wald t 检验的参考分布使用 Satterthwaite 或鞍点近似。我们使用各种估计器(传统三明治、BRL、Mancl 和 DeRouen 的 BC 估计器,以及对 Kott 提出的估计器的修改)进行了大量的检验模拟研究,并在不同的设置下对参考分布进行了近似,这些设置改变了解释变量的分布、系数的值以及聚类内相关性(ICC)的程度。我们的新方法通常效果良好,当 ICC 较小时,能提供拟合系数变异性的准确估计,且检验的 I 型错误率接近名义水平。当 ICC 较大时,我们的方法效果稍差,但仍继续优于传统三明治和其他替代方法。