Lu Bing, Preisser John S, Qaqish Bahjat F, Suchindran Chirayath, Bangdiwala Shrikant I, Wolfson Mark
Brown University Center for Primary Care and Prevention, Memorial Hospital of Rhode Island, Pawtucket, Rhode Island 02860, USA.
Biometrics. 2007 Sep;63(3):935-41. doi: 10.1111/j.1541-0420.2007.00764.x.
Mancl and DeRouen (2001, Biometrics57, 126-134) and Kauermann and Carroll (2001, JASA96, 1387-1398) proposed alternative bias-corrected covariance estimators for generalized estimating equations parameter estimates of regression models for marginal means. The finite sample properties of these estimators are compared to those of the uncorrected sandwich estimator that underestimates variances in small samples. Although the formula of Mancl and DeRouen generally overestimates variances, it often leads to coverage of 95% confidence intervals near the nominal level even in some situations with as few as 10 clusters. An explanation for these seemingly contradictory results is that the tendency to undercoverage resulting from the substantial variability of sandwich estimators counteracts the impact of overcorrecting the bias. However, these positive results do not generally hold; for small cluster sizes (e.g., <10) their estimator often results in overcoverage, and the bias-corrected covariance estimator of Kauermann and Carroll may be preferred. The methods are illustrated using data from a nested cross-sectional cluster intervention trial on reducing underage drinking.
曼克尔和德鲁恩(2001年,《生物统计学》57卷,第126 - 134页)以及考曼和卡罗尔(2001年,《美国统计协会杂志》96卷,第1387 - 1398页)针对边际均值回归模型的广义估计方程参数估计,提出了替代的偏差校正协方差估计量。将这些估计量的有限样本性质与未校正的三明治估计量的性质进行比较,后者在小样本中会低估方差。尽管曼克尔和德鲁恩的公式通常会高估方差,但即使在某些仅有10个聚类的情况下,它也常常能使95%置信区间的覆盖率接近名义水平。对这些看似矛盾的结果的一种解释是,三明治估计量的巨大变异性导致的覆盖率不足的趋势抵消了过度校正偏差的影响。然而,这些积极结果通常并不成立;对于小聚类规模(例如,<10),他们的估计量常常会导致覆盖率过高,考曼和卡罗尔的偏差校正协方差估计量可能更受青睐。使用一项关于减少未成年人饮酒的嵌套横断面聚类干预试验的数据对这些方法进行了说明。