Chiu Wah, Baker Matthew L, Almo Steven C
National Center for Macromolecular Imaging and Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
Trends Cell Biol. 2006 Mar;16(3):144-50. doi: 10.1016/j.tcb.2006.01.002. Epub 2006 Feb 3.
Multi-component macromolecular machines contribute to all essential biological processes, from cell motility and signal transduction to information storage and processing. Structural analysis of assemblies at atomic resolution is emerging as the field of structural cell biology. Several recent studies, including those focused on the ribosome, the acrosomal bundle and bacterial flagella, have demonstrated the ability of a hybrid approach that combines imaging, crystallography and computational tools to generate testable atomic models of fundamental biological machines. A complete understanding of cellular and systems biology will require the detailed structural understanding of hundreds of biological machines. The realization of this goal demands a concerted effort to develop and apply new strategies for the systematic identification, isolation, structural characterization and mechanistic analysis of multi-component assemblies at all resolution ranges. The establishment of a database describing the structural and dynamic properties of protein assemblies will provide novel opportunities to define the molecular and atomic mechanisms controlling overall cell physiology.
多组分大分子机器参与了所有基本的生物过程,从细胞运动、信号转导到信息存储与处理。以原子分辨率对组装体进行结构分析正成为结构细胞生物学领域。最近的几项研究,包括那些聚焦于核糖体、顶体束和细菌鞭毛的研究,已经证明了一种结合成像、晶体学和计算工具的混合方法能够生成基本生物机器的可测试原子模型。对细胞生物学和系统生物学的全面理解将需要对数百种生物机器进行详细的结构理解。要实现这一目标,需要共同努力开发并应用新策略,以便在所有分辨率范围内对多组分组装体进行系统的识别、分离、结构表征和机制分析。建立一个描述蛋白质组装体结构和动态特性的数据库,将为定义控制整个细胞生理学的分子和原子机制提供新的机会。