Chiu Sheng-Wen, Leake Mark C
Biochemistry Department, South Parks Road, Oxford University, Oxford OX1 3QU, UK; E-Mail:
Int J Mol Sci. 2011;12(4):2518-42. doi: 10.3390/ijms12042518. Epub 2011 Apr 15.
Molecular machines are examples of "pre-established" nanotechnology, driving the basic biochemistry of living cells. They encompass an enormous range of function, including fuel generation for chemical processes, transport of molecular components within the cell, cellular mobility, signal transduction and the replication of the genetic code, amongst many others. Much of our understanding of such nanometer length scale machines has come from in vitro studies performed in isolated, artificial conditions. Researchers are now tackling the challenges of studying nanomachines in their native environments. In this review, we outline recent in vivo investigations on nanomachines in model bacterial systems using state-of-the-art genetics technology combined with cutting-edge single-molecule and super-resolution fluorescence microscopy. We conclude that single-molecule and super-resolution fluorescence imaging provide powerful tools for the biochemical, structural and functional characterization of biological nanomachines. The integrative spatial, temporal, and single-molecule data obtained simultaneously from fluorescence imaging open an avenue for systems-level single-molecule cellular biophysics and in vivo biochemistry.
分子机器是“预先设定好的”纳米技术的实例,驱动着活细胞的基础生物化学过程。它们具有极其广泛的功能,包括为化学过程产生能量、在细胞内运输分子成分、细胞移动性、信号转导以及遗传密码的复制等等。我们对这类纳米级机器的大部分理解都来自于在孤立的人工条件下进行的体外研究。研究人员目前正在应对在其原生环境中研究纳米机器的挑战。在这篇综述中,我们概述了近期利用先进的遗传学技术结合前沿的单分子和超分辨率荧光显微镜,对模型细菌系统中的纳米机器进行的体内研究。我们得出结论,单分子和超分辨率荧光成像为生物纳米机器的生化、结构和功能表征提供了强大的工具。从荧光成像同时获得的综合空间、时间和单分子数据为系统水平的单分子细胞生物物理学和体内生物化学开辟了一条途径。