Bassingthwaighte James B
University of Washington, Department of Bioengineering, Seattle, Washington 98195-7962, USA.
Microcirculation. 2006 Mar;13(2):111-8. doi: 10.1080/10739680500466384.
The equations for transport of hydrophilic solutes through aqueous pores provide a fundamental basis for examining capillary-tissue exchange and water and solute flux through transmembrane channels, but the theory remains incomplete for ratios, alpha, of sphere diameters to pore diameters greater than 0.4. Values for permeabilities, P, and reflection coefficients, sigma, from Lewellen, working with Lightfoot et al., at alpha = 0.5 and 0.95, were combined with earlier values for alpha < 0.4, and the physically required values at alpha = 1.0, to provide accurate expressions over the whole range of 0 < alpha < 1.
The "data" were the long-accepted theory for alpha < 0.2 and the computational results from Lewellen and Lightfoot et al. on hard spheres (of 5 different alpha's) moving by convection and diffusion through a tight cylindrical pore, accounting for molecular exclusion, viscous forces, pressure drop, torque and rotation of spheres off the center line (averaging across all accessible radial positions), and the asymptotic values at alpha = 1.0. Coefficients for frictional hindrance to diffusion, F(alpha), and drag, G(alpha), and functions for sigma(alpha) and P(alpha), were represented by power law functions and the parameters optimized to give best fits to the combined "data."
The reflection coefficient sigma = {1 - [1 - (1 - phi)2]G'(alpha)} + 2alpha2 phi F'(alpha), and the relative permeability P/Pmax = phi F '(alpha)[1 + 9alpha5.5 x (1.0 - alpha5)0.02], where phi is the partition coefficient or volume fraction of the pore available to solute. The new expression for the diffusive hindrance is F'(alpha) = (1 - alpha2)(3/2) phi/[1 + 0.2 x alpha2 x (1 - alpha2)16], and for the drag factor is G'(alpha) = (1 - 2alpha(2)/3 - 0.20217 alpha5)/(1 - 0.75851 alpha5) - 0.0431[1 - (1 - alpha10)]. All of these converge monotonically to the correct limits at alpha = 1.
These are the first expressions providing hydrodynamically based estimates of sigma(alpha) and P(alpha) over 0 < alpha < 1 They should be accurate to within 1-2%.
亲水性溶质通过水相孔道的传输方程为研究毛细血管-组织交换以及水和溶质通过跨膜通道的通量提供了基本依据,但对于球体直径与孔径之比α大于0.4的情况,该理论仍不完整。Lewellen与Lightfoot等人合作得出的α = 0.5和0.95时的渗透率P值和反射系数σ值,与α < 0.4时的早期值以及α = 1.0时的物理需求值相结合,以在0 < α < 1的整个范围内提供准确的表达式。
“数据”包括长期以来被接受的α < 0.2的理论,以及Lewellen和Lightfoot等人关于硬球体(5种不同α值)通过对流和扩散在紧密圆柱形孔道中移动的计算结果,其中考虑了分子排斥、粘性力、压降、球体偏离中心线的扭矩和旋转(对所有可及径向位置进行平均),以及α = 1.0时的渐近值。扩散摩擦阻碍系数F(α)、阻力G(α)以及σ(α)和P(α)的函数均由幂律函数表示,并对参数进行优化以使其与合并后的“数据”最佳拟合。
反射系数σ = {1 - [1 - (1 - φ)²]G'(α)} + 2α²φF'(α),相对渗透率P/Pmax = φF '(α)[1 + 9α⁵.⁵×(1.0 - α⁵)⁰.⁰²],其中φ是溶质可利用的孔道分配系数或体积分数。扩散阻碍的新表达式为F'(α) = (1 - α²)^(3/2)φ/[1 + 0.2×α²×(1 - α²)¹⁶],阻力因子的表达式为G'(α) = (1 - 2α²/3 - 0.20217α⁵)/(1 - 0.75851α⁵) - 0.0431[1 - (1 - α¹⁰)]。所有这些在α = 1时均单调收敛至正确极限。
这些是首批在0 < α < 1范围内基于流体动力学对σ(α)和P(α)进行估计的表达式。它们的准确度应在1 - 2%以内。