Suppr超能文献

亲水性溶质多孔传输流体动力学理论的一种实际扩展。

A practical extension of hydrodynamic theory of porous transport for hydrophilic solutes.

作者信息

Bassingthwaighte James B

机构信息

University of Washington, Department of Bioengineering, Seattle, Washington 98195-7962, USA.

出版信息

Microcirculation. 2006 Mar;13(2):111-8. doi: 10.1080/10739680500466384.

Abstract

OBJECTIVE

The equations for transport of hydrophilic solutes through aqueous pores provide a fundamental basis for examining capillary-tissue exchange and water and solute flux through transmembrane channels, but the theory remains incomplete for ratios, alpha, of sphere diameters to pore diameters greater than 0.4. Values for permeabilities, P, and reflection coefficients, sigma, from Lewellen, working with Lightfoot et al., at alpha = 0.5 and 0.95, were combined with earlier values for alpha < 0.4, and the physically required values at alpha = 1.0, to provide accurate expressions over the whole range of 0 < alpha < 1.

METHODS

The "data" were the long-accepted theory for alpha < 0.2 and the computational results from Lewellen and Lightfoot et al. on hard spheres (of 5 different alpha's) moving by convection and diffusion through a tight cylindrical pore, accounting for molecular exclusion, viscous forces, pressure drop, torque and rotation of spheres off the center line (averaging across all accessible radial positions), and the asymptotic values at alpha = 1.0. Coefficients for frictional hindrance to diffusion, F(alpha), and drag, G(alpha), and functions for sigma(alpha) and P(alpha), were represented by power law functions and the parameters optimized to give best fits to the combined "data."

RESULTS

The reflection coefficient sigma = {1 - [1 - (1 - phi)2]G'(alpha)} + 2alpha2 phi F'(alpha), and the relative permeability P/Pmax = phi F '(alpha)[1 + 9alpha5.5 x (1.0 - alpha5)0.02], where phi is the partition coefficient or volume fraction of the pore available to solute. The new expression for the diffusive hindrance is F'(alpha) = (1 - alpha2)(3/2) phi/[1 + 0.2 x alpha2 x (1 - alpha2)16], and for the drag factor is G'(alpha) = (1 - 2alpha(2)/3 - 0.20217 alpha5)/(1 - 0.75851 alpha5) - 0.0431[1 - (1 - alpha10)]. All of these converge monotonically to the correct limits at alpha = 1.

CONCLUSIONS

These are the first expressions providing hydrodynamically based estimates of sigma(alpha) and P(alpha) over 0 < alpha < 1 They should be accurate to within 1-2%.

摘要

目的

亲水性溶质通过水相孔道的传输方程为研究毛细血管-组织交换以及水和溶质通过跨膜通道的通量提供了基本依据,但对于球体直径与孔径之比α大于0.4的情况,该理论仍不完整。Lewellen与Lightfoot等人合作得出的α = 0.5和0.95时的渗透率P值和反射系数σ值,与α < 0.4时的早期值以及α = 1.0时的物理需求值相结合,以在0 < α < 1的整个范围内提供准确的表达式。

方法

“数据”包括长期以来被接受的α < 0.2的理论,以及Lewellen和Lightfoot等人关于硬球体(5种不同α值)通过对流和扩散在紧密圆柱形孔道中移动的计算结果,其中考虑了分子排斥、粘性力、压降、球体偏离中心线的扭矩和旋转(对所有可及径向位置进行平均),以及α = 1.0时的渐近值。扩散摩擦阻碍系数F(α)、阻力G(α)以及σ(α)和P(α)的函数均由幂律函数表示,并对参数进行优化以使其与合并后的“数据”最佳拟合。

结果

反射系数σ = {1 - [1 - (1 - φ)²]G'(α)} + 2α²φF'(α),相对渗透率P/Pmax = φF '(α)[1 + 9α⁵.⁵×(1.0 - α⁵)⁰.⁰²],其中φ是溶质可利用的孔道分配系数或体积分数。扩散阻碍的新表达式为F'(α) = (1 - α²)^(3/2)φ/[1 + 0.2×α²×(1 - α²)¹⁶],阻力因子的表达式为G'(α) = (1 - 2α²/3 - 0.20217α⁵)/(1 - 0.75851α⁵) - 0.0431[1 - (1 - α¹⁰)]。所有这些在α = 1时均单调收敛至正确极限。

结论

这些是首批在0 < α < 1范围内基于流体动力学对σ(α)和P(α)进行估计的表达式。它们的准确度应在1 - 2%以内。

相似文献

1
A practical extension of hydrodynamic theory of porous transport for hydrophilic solutes.
Microcirculation. 2006 Mar;13(2):111-8. doi: 10.1080/10739680500466384.
2
Transport of macromolecules across microvascular walls: the two-pore theory.
Physiol Rev. 1994 Jan;74(1):163-219. doi: 10.1152/physrev.1994.74.1.163.
4
Fluid and protein fluxes across small and large pores in the microvasculature. Application of two-pore equations.
Acta Physiol Scand. 1987 Nov;131(3):411-28. doi: 10.1111/j.1748-1716.1987.tb08257.x.
5
Identification of microvascular transport pathways in skeletal muscle.
Am J Physiol. 1994 Jul;267(1 Pt 2):H383-99. doi: 10.1152/ajpheart.1994.267.1.H383.
7
Test of a two-pathway model for small-solute exchange across the capillary wall.
Am J Physiol. 1998 Jun;274(6):H2062-73. doi: 10.1152/ajpheart.1998.274.6.H2062.
8
Surfactant solutions and porous substrates: spreading and imbibition.
Adv Colloid Interface Sci. 2004 Nov 29;111(1-2):3-27. doi: 10.1016/j.cis.2004.07.007.

引用本文的文献

1
Molecular exclusion limits for diffusion across a porous capsid.
Nat Commun. 2021 May 18;12(1):2903. doi: 10.1038/s41467-021-23200-1.
3
Animal simulations facilitate smart drug design through prediction of nanomaterial transport to individual tissue cells.
Sci Adv. 2020 Jan 22;6(4):eaax2642. doi: 10.1126/sciadv.aax2642. eCollection 2020 Jan.
5
Modeling serotonin uptake in the lung shows endothelial transporters dominate over cleft permeation.
Am J Physiol Lung Cell Mol Physiol. 2013 Jul 1;305(1):L42-55. doi: 10.1152/ajplung.00420.2012. Epub 2013 May 3.
6
Multiscale modeling of metabolism, flows, and exchanges in heterogeneous organs.
Ann N Y Acad Sci. 2010 Feb;1188:111-20. doi: 10.1111/j.1749-6632.2009.05090.x.
7
IL-6 adsorption dynamics in hemoadsorption beads studied using confocal laser scanning microscopy.
J Biomed Mater Res B Appl Biomater. 2010 Feb;92(2):390-6. doi: 10.1002/jbm.b.31527.
8
Multiscale model of liver DCE-MRI towards a better understanding of tumor complexity.
IEEE Trans Med Imaging. 2010 Mar;29(3):699-707. doi: 10.1109/TMI.2009.2031435. Epub 2009 Sep 15.
9
Experimental validation of a theoretical model of cytokine capture using a hemoadsorption device.
Ann Biomed Eng. 2009 Nov;37(11):2310-6. doi: 10.1007/s10439-009-9780-4. Epub 2009 Aug 14.

本文引用的文献

1
STATISTICAL EVALUATION OF SIEVE CONSTANTS IN ULTRAFILTRATION.
J Gen Physiol. 1936 Sep 20;20(1):95-104. doi: 10.1085/jgp.20.1.95.
3
Thermodynamic analysis of the permeability of biological membranes to non-electrolytes.
Biochim Biophys Acta. 1958 Feb;27(2):229-46. doi: 10.1016/0006-3002(58)90330-5.
5
Transient transcapillary exchange of water driven by osmotic forces in the heart.
Am J Physiol Heart Circ Physiol. 2003 Sep;285(3):H1317-31. doi: 10.1152/ajpheart.00587.2002. Epub 2003 May 8.
6
Screened hydrodynamic interaction in a narrow channel.
Phys Rev Lett. 2002 Oct 28;89(18):188302. doi: 10.1103/PhysRevLett.89.188302. Epub 2002 Oct 15.
7
An integrative model of coupled water and solute exchange in the heart.
Am J Physiol Heart Circ Physiol. 2003 Sep;285(3):H1303-16. doi: 10.1152/ajpheart.00933.2001. Epub 2002 Aug 8.
8
Microvascular permeability.
Physiol Rev. 1999 Jul;79(3):703-61. doi: 10.1152/physrev.1999.79.3.703.
10
The flow of solute and solvent across a two-membrane system.
J Theor Biol. 1963 Nov;5(3):426-42. doi: 10.1016/0022-5193(63)90088-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验