Kellen Michael R, Bassingthwaighte James B
Department of Bioengineering, University of Washington, Seattle, WA 98195-7962, USA.
Am J Physiol Heart Circ Physiol. 2003 Sep;285(3):H1303-16. doi: 10.1152/ajpheart.00933.2001. Epub 2002 Aug 8.
Physiologists have devised many models for interpreting water and solute exchange data in whole organs, but the models have typically neglected key aspects of the underlying physiology to present the simplest possible model for a given experimental situation. We have developed a physiologically realistic model of microcirculatory water and solute exchange and applied it to diverse observations of water and solute exchange in the heart. Model simulations are consistent with the results of osmotic weight transient, tracer indicator dilution, and steady-state lymph sampling experiments. The key model features that permit this unification are the use of an axially distributed blood-tissue exchange region, inclusion of a lymphatic drain in the interstitium, and the independent computation of transcapillary solute and solvent fluxes through three different pathways.
生理学家们设计了许多模型来解释整个器官中的水和溶质交换数据,但这些模型通常忽略了基础生理学的关键方面,以便为特定实验情况提供尽可能简单的模型。我们开发了一个微循环水和溶质交换的生理现实模型,并将其应用于心脏中水和溶质交换的各种观察结果。模型模拟结果与渗透重量瞬变、示踪剂指示剂稀释和稳态淋巴采样实验的结果一致。实现这种统一的关键模型特征包括使用轴向分布的血液-组织交换区域、在间质中包含淋巴管引流,以及通过三种不同途径独立计算跨毛细血管溶质和溶剂通量。