Wang B, He S, Wang L, Shuo L
Water Pollution Control Research Center, Harbin Institute of Technology (HIT), 202 Haihe Road, Harbin, China 150090.
Water Sci Technol. 2005;52(10-11):435-42.
Experiments have been carried out to get an understanding of the effect of DO, C/N ratio and pH on the performance of a bench scale membrane bioreactor (MBR) in simultaneous nitrification and denitrification. It was found that under the conditions of MLSS in the range of 8000-9000 mg/L and temperature of water in the MBR of 24 degrees C, influent COD and NH3-N in the range of 523-700 mg/L and 17.24-24 mg/L respectively, the removals of COD, NH3-N and TN were 98%, 99% and 60%; 96.5%, 0,98% and 75%; 96%, 95% and 92%; 90%,70% and 60% respectively at DO of 6, 3, 1 and 0.5 mg/L. It was also found that the changes in C/N ratio and pH in a certain range have a slight effect on COD removal but have significant influence on the removal of NH3-N and TN. The results showed that only under the conditions that each ecological factor was maintained relatively steadily, simultaneous nitrification and de-nitrification proceeded smoothly. It was found that when C/N ratio was 30, the influent pH 7.2, the temperature of water in MBR 24 degrees C and DO 1 mg/L, as optimum conditions, the removals of COD, NH3-N and TN were 96%, 95% and 92% respectively. In addition, mechanism research on simultaneous nitrification and de-nitrification in MBR has been conducted as well.
Water Sci Technol. 2005
Water Sci Technol. 2005
Water Sci Technol. 2005
Commun Agric Appl Biol Sci. 2003
Water Sci Technol. 2004