Suppr超能文献

在模拟磷脂双分子层头基和核心区域的相中有机化合物的分配。

Partitioning of organic compounds in phases imitating the headgroup and core regions of phospholipid bilayers.

作者信息

Lukacova Viera, Peng Ming, Tandlich Roman, Hinderliter Anne, Balaz Stefan

机构信息

Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105, USA.

出版信息

Langmuir. 2006 Feb 14;22(4):1869-74. doi: 10.1021/la052187j.

Abstract

Solvation free energies of drugs, peptides, and other small molecules in the core and headgroup regions of phospholipid bilayers determine their conformations, accumulation, and transport properties. The transfer free energy includes the energy terms for the formation of a cavity for the solute, the interactions of the solute with phospholipids, electrostatic interactions of the solute with the membrane, and dipole potentials and entropy terms. The interaction energies with phospholipids can be estimated by correlating the partitioning in surrogate solvent systems and in the bilayer. As the headgroup surrogate, we use diacetylphosphatidylcholine (DAcPC), the acetylated headgroup of the most abundant mammalian phospholipid, phosphatidylcholine, which forms a homogeneous solution with acceptable viscosity when mixed with water in ratios similar to those in the fully hydrated bilayer. The two-phase system of n-hexadecane (C16) as the core surrogate and hydrated DAcPC was used to monitor partitioning of 16 nonionizable compounds. On the bilogarithmic scale, the C16/DAcPC partition coefficients correlate neither with those in the C16/water and 1-octanol/water systems nor with their difference, which is frequently used as a parameter of hydrogen bonding for prediction of the bilayer location of the solutes. The C16/DAcPC system provides a satisfactory emulation of the solvation properties of the bilayer regions, as reflected in correct predictions of the bilayer location for those of the studied chemicals, for which this information is available.

摘要

药物、肽和其他小分子在磷脂双层核心和头部区域的溶剂化自由能决定了它们的构象、积累和转运特性。转移自由能包括为溶质形成空腔的能量项、溶质与磷脂的相互作用、溶质与膜的静电相互作用以及偶极势和熵项。与磷脂的相互作用能可通过关联在替代溶剂系统和双层中的分配来估算。作为头部替代物,我们使用二乙酰磷脂酰胆碱(DAcPC),它是最丰富的哺乳动物磷脂磷脂酰胆碱的乙酰化头部,当与水按与完全水合双层中相似的比例混合时,会形成具有可接受粘度的均匀溶液。以正十六烷(C16)作为核心替代物和水合DAcPC的两相系统用于监测16种非离子化化合物的分配。在双对数尺度上,C16/DAcPC分配系数既不与C16/水和1-辛醇/水系统中的分配系数相关,也不与它们的差值相关,而差值常被用作氢键参数来预测溶质在双层中的位置。C16/DAcPC系统对双层区域的溶剂化性质提供了令人满意的模拟,这体现在对那些有可用信息的研究化学品的双层位置的正确预测中。

相似文献

3
Structural determinants of drug partitioning in surrogates of phosphatidylcholine bilayer strata.
Mol Pharm. 2013 Oct 7;10(10):3684-96. doi: 10.1021/mp400204y. Epub 2013 Sep 11.
4
Structural determinants of drug partitioning in n-hexadecane/water system.
J Chem Inf Model. 2013 Jun 24;53(6):1424-35. doi: 10.1021/ci400112k. Epub 2013 May 21.
5
Polarity of Hydrated Phosphatidylcholine Headgroups.
Langmuir. 2019 Jun 25;35(25):8460-8471. doi: 10.1021/acs.langmuir.8b03992. Epub 2019 Jun 17.
6
Response to "comment on 'structural determinants of drug partitioning in surrogates of phosphatidylcholine bilayer strata'".
Mol Pharm. 2015 Apr 6;12(4):1330-4. doi: 10.1021/acs.molpharmaceut.5b00139. Epub 2015 Mar 27.
7
The barrier domain for solute permeation varies with lipid bilayer phase structure.
J Membr Biol. 1998 Sep 1;165(1):77-90. doi: 10.1007/s002329900422.
8
Scalable Synthesis and Purification of Acetylated Phosphatidyl Choline Headgroup.
Org Process Res Dev. 2017 Feb 17;21(2):177-181. doi: 10.1021/acs.oprd.6b00261. Epub 2017 Jan 24.
10
Thermodynamics of partitioning of the antimalarial drug mefloquine in phospholipid bilayers and bulk solvents.
Chem Pharm Bull (Tokyo). 1997 Dec;45(12):2055-60. doi: 10.1248/cpb.45.2055.

引用本文的文献

1
Mechanistic studies on pH-permeability relationships: Impact of the membrane polar headgroup region on pKa.
Int J Pharm. 2025 Mar 30;673:125383. doi: 10.1016/j.ijpharm.2025.125383. Epub 2025 Feb 22.
2
Polarity of Hydrated Phosphatidylcholine Headgroups.
Langmuir. 2019 Jun 25;35(25):8460-8471. doi: 10.1021/acs.langmuir.8b03992. Epub 2019 Jun 17.
3
Scalable Synthesis and Purification of Acetylated Phosphatidyl Choline Headgroup.
Org Process Res Dev. 2017 Feb 17;21(2):177-181. doi: 10.1021/acs.oprd.6b00261. Epub 2017 Jan 24.
6
Structural determinants of drug partitioning in surrogates of phosphatidylcholine bilayer strata.
Mol Pharm. 2013 Oct 7;10(10):3684-96. doi: 10.1021/mp400204y. Epub 2013 Sep 11.
7
Structural determinants of drug partitioning in n-hexadecane/water system.
J Chem Inf Model. 2013 Jun 24;53(6):1424-35. doi: 10.1021/ci400112k. Epub 2013 May 21.
8
Does transbilayer diffusion have a role in membrane transport of drugs?
Drug Discov Today. 2012 Oct;17(19-20):1079-87. doi: 10.1016/j.drudis.2012.06.003. Epub 2012 Jun 15.
10
Modeling kinetics of subcellular disposition of chemicals.
Chem Rev. 2009 May;109(5):1793-899. doi: 10.1021/cr030440j.

本文引用的文献

3
Structural analysis of drug molecules in biological membranes.
Biophys J. 1986 Jan;49(1):91-4. doi: 10.1016/S0006-3495(86)83605-0.
5
Comparison of hydrogen bonding in 1-octanol and 2-octanol as probed by spectroscopic techniques.
J Phys Chem B. 2006 Sep 14;110(36):18017-25. doi: 10.1021/jp062614h.
7
Tuning of hydrogen bond strength using substituents on phenol and aniline: a possible ligand design strategy.
J Comput Aided Mol Des. 2004 Jun;18(6):421-31. doi: 10.1007/s10822-004-3741-7.
8
2H-NMR study and molecular dynamics simulation of the location, alignment, and mobility of pyrene in POPC bilayers.
Biophys J. 2005 Mar;88(3):1818-27. doi: 10.1529/biophysj.104.052399. Epub 2004 Dec 13.
9
Amantadine partition and localization in phospholipid membrane: a solution NMR study.
Biochem Biophys Res Commun. 2004 Nov 5;324(1):212-7. doi: 10.1016/j.bbrc.2004.09.039.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验