Van Lenthe E, Baerends E J
Afdeling Theoretische Chemie, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
J Comput Chem. 2003 Jul 15;24(9):1142-56. doi: 10.1002/jcc.10255.
Seven different types of Slater type basis sets for the elements H (Z = 1) up to E118 (Z = 118), ranging from a double zeta valence quality up to a quadruple zeta valence quality, are tested in their performance in neutral atomic and diatomic oxide calculations. The exponents of the Slater type functions are optimized for the use in (scalar relativistic) zeroth-order regular approximated (ZORA) equations. Atomic tests reveal that, on average, the absolute basis set error of 0.03 kcal/mol in the density functional calculation of the valence spinor energies of the neutral atoms with the largest all electron basis set of quadruple zeta quality is lower than the average absolute difference of 0.16 kcal/mol in these valence spinor energies if one compares the results of ZORA equation with those of the fully relativistic Dirac equation. This average absolute basis set error increases to about 1 kcal/mol for the all electron basis sets of triple zeta valence quality, and to approximately 4 kcal/mol for the all electron basis sets of double zeta quality. The molecular tests reveal that, on average, the calculated atomization energies of 118 neutral diatomic oxides MO, where the nuclear charge Z of M ranges from Z = 1-118, with the all electron basis sets of triple zeta quality with two polarization functions added are within 1-2 kcal/mol of the benchmark results with the much larger all electron basis sets, which are of quadruple zeta valence quality with four polarization functions added. The accuracy is reduced to about 4-5 kcal/mol if only one polarization function is used in the triple zeta basis sets, and further reduced to approximately 20 kcal/mol if the all electron basis sets of double zeta quality are used. The inclusion of g-type STOs to the large benchmark basis sets had an effect of less than 1 kcal/mol in the calculation of the atomization energies of the group 2 and group 14 diatomic oxides. The basis sets that are optimized for calculations using the frozen core approximation (frozen core basis sets) have a restricted basis set in the core region compared to the all electron basis sets. On average, the use of these frozen core basis sets give atomic basis set errors that are approximately twice as large as the corresponding all electron basis set errors and molecular atomization energies that are close to the corresponding all electron results. Only if spin-orbit coupling is included in the frozen core calculations larger errors are found, especially for the heavier elements, due to the additional approximation that is made that the basis functions are orthogonalized on scalar relativistic core orbitals.
测试了七种不同类型的斯莱特型基组,涵盖从氢(Z = 1)到118号元素(Z = 118),其质量范围从双ζ价到四ζ价。在中性原子和双原子氧化物计算中检验了这些基组的性能。斯莱特型函数的指数针对(标量相对论)零阶正则近似(ZORA)方程的使用进行了优化。原子测试表明,平均而言,在密度泛函计算中性原子价旋量能量时,使用具有四ζ质量的最大全电子基组时,绝对基组误差为0.03 kcal/mol,低于将ZORA方程结果与完全相对论狄拉克方程结果相比较时这些价旋量能量中0.16 kcal/mol的平均绝对差值。对于具有三ζ价质量的全电子基组,该平均绝对基组误差增加到约1 kcal/mol,对于具有双ζ质量的全电子基组,则增加到约4 kcal/mol。分子测试表明,平均而言,对于118种中性双原子氧化物MO(其中M的核电荷Z范围为Z = 1 - 118),使用添加了两个极化函数的具有三ζ质量的全电子基组计算得到的原子化能,与使用添加了四个极化函数的具有四ζ价质量的大得多的全电子基组的基准结果相差在1 - 2 kcal/mol以内。如果在三ζ基组中仅使用一个极化函数,精度会降低到约4 - 5 kcal/mol,如果使用具有双ζ质量的全电子基组,精度会进一步降低到约20 kcal/mol。在大的基准基组中包含g型STO对第2族和第14族双原子氧化物原子化能的计算影响小于1 kcal/mol。与全电子基组相比,针对使用冻结核心近似进行计算而优化的基组(冻结核心基组)在核心区域具有受限的基组。平均而言,使用这些冻结核心基组时,原子基组误差大约是相应全电子基组误差的两倍,分子原子化能接近相应的全电子结果。只有在冻结核心计算中包含自旋 - 轨道耦合时,才会发现更大的误差,特别是对于较重的元素,这是由于额外的近似,即基函数在标量相对论核心轨道上进行了正交化。