TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Ave., Cambridge CB3 0HE, United Kingdom.
J Chem Phys. 2010 Jan 21;132(3):034111. doi: 10.1063/1.3288054.
We study the efficiency, precision and accuracy of all-electron variational and diffusion quantum Monte Carlo calculations using Slater basis sets. Starting from wave functions generated by Hartree-Fock and density functional theory, we describe an algorithm to enforce the electron-nucleus cusp condition by linear projection. For the 55 molecules in the G2 set, the diffusion quantum Monte Carlo calculations recovers an average of 95% of the correlation energy and reproduces bond energies to a mean absolute deviation of 3.2 kcal/mol. Comparing the individual total energies with essentially exact values, we investigate the error cancellation in atomization and chemical reaction path energies, giving additional insight into the sizes of nodal surface errors.
我们研究了使用 Slater 基组的全电子变分和扩散量子蒙特卡罗计算的效率、精度和准确性。从 Hartree-Fock 和密度泛函理论生成的波函数出发,我们描述了一种通过线性投影强制电子-核余切条件的算法。对于 G2 集的 55 个分子,扩散量子蒙特卡罗计算恢复了平均 95%的相关能量,并将键能的平均绝对偏差重现到 3.2 kcal/mol。通过将单个总能量与基本精确值进行比较,我们研究了原子化和化学反应路径能量中的误差抵消,进一步深入了解节点曲面误差的大小。