Suppr超能文献

含有二棕榈酰磷脂酰胆碱(DPPC)和胆固醇类似物的脂质单层的相行为。

Phase behavior of lipid monolayers containing DPPC and cholesterol analogs.

作者信息

Stottrup Benjamin L, Keller Sarah L

机构信息

Departments of Physics and Chemistry, University of Washington, Seattle, Washington 98195, USA.

出版信息

Biophys J. 2006 May 1;90(9):3176-83. doi: 10.1529/biophysj.105.072959. Epub 2006 Feb 3.

Abstract

We investigate the miscibility phase behavior of lipid monolayers containing a wide variety of sterols. Six of the sterols satisfy a definition from an earlier study of "membrane-active sterols" in bilayers (cholesterol, epicholesterol, lathosterol, dihydrocholesterol, ergosterol, and desmosterol), and six do not (25-hydroxycholesterol, lanosterol, androstenolone, coprostanol, cholestane, and cholestenone). We find that monolayers containing dipalmitoyl phosphatidylcholine mixed with membrane-active sterols generally produce phase diagrams containing two distinct regions of immiscible liquid phases, whereas those with membrane-inactive sterols generally do not. This observation establishes a correlation between lipid monolayers and bilayers. It also demonstrates that the ability to form two regions of immiscibility in monolayers is not one of the biophysical attributes that explains cholesterol's predominance in animal cell membranes. Furthermore, we find unusual phase behavior for dipalmitoyl phosphatidylcholine monolayers containing 25-hydroxycholesterol, which produce both an upper and a lower miscibility transition. The lower transition correlates with a sharp change of slope in the pressure-area isotherm.

摘要

我们研究了含有多种甾醇的脂质单层的混溶相行为。其中六种甾醇符合早期关于双层膜中“膜活性甾醇”的定义(胆固醇、表胆固醇、羊毛甾醇、二氢胆固醇、麦角甾醇和 desmosterol),另外六种则不符合(25-羟基胆固醇、羊毛甾烷醇、雄烯二酮、粪甾醇、胆甾烷和胆甾烯酮)。我们发现,含有二棕榈酰磷脂酰胆碱并与膜活性甾醇混合的单层通常会产生包含两个不同不混溶液相区域的相图,而含有膜非活性甾醇的单层通常不会。这一观察结果建立了脂质单层与双层之间的相关性。它还表明,在单层中形成两个不混溶区域的能力并非解释胆固醇在动物细胞膜中占主导地位的生物物理属性之一。此外,我们发现含有 25-羟基胆固醇的二棕榈酰磷脂酰胆碱单层具有不寻常的相行为,其会产生一个上混溶转变和一个下混溶转变。下混溶转变与压力-面积等温线斜率的急剧变化相关。

相似文献

1
Phase behavior of lipid monolayers containing DPPC and cholesterol analogs.
Biophys J. 2006 May 1;90(9):3176-83. doi: 10.1529/biophysj.105.072959. Epub 2006 Feb 3.
2
Sterol structure determines miscibility versus melting transitions in lipid vesicles.
Biophys J. 2005 Sep;89(3):1760-8. doi: 10.1529/biophysj.104.049635. Epub 2005 Jun 10.
5
Interfacial behavior of cholesterol, ergosterol, and lanosterol in mixtures with DPPC and DMPC.
Biophys J. 2008 Sep;95(5):2340-55. doi: 10.1529/biophysj.108.132076. Epub 2008 May 30.
9
A comparative study of the effects of cholesterol and desmosterol on zwitterionic DPPC model membranes.
Chem Phys Lipids. 2015 May;188:37-45. doi: 10.1016/j.chemphyslip.2015.03.006. Epub 2015 Apr 3.
10
Diffusion of cholesterol and its precursors in lipid membranes studied by 1H pulsed field gradient magic angle spinning NMR.
Biophys J. 2005 Oct;89(4):2504-12. doi: 10.1529/biophysj.105.062018. Epub 2005 Aug 5.

引用本文的文献

2
Lipid Droplet Surface Promotes 3D Morphological Evolution of Non-Rhomboidal Cholesterol Crystals.
Adv Sci (Weinh). 2025 Jan;12(1):e2409201. doi: 10.1002/advs.202409201. Epub 2024 Nov 8.
3
Sterol-lipids enable large-scale, liquid-liquid phase separation in bilayer membranes of only two components.
Proc Natl Acad Sci U S A. 2024 Sep 17;121(38):e2401241121. doi: 10.1073/pnas.2401241121. Epub 2024 Sep 9.
4
Understanding Aβ Peptide Binding to Lipid Membranes: A Biophysical Perspective.
Int J Mol Sci. 2024 Jun 10;25(12):6401. doi: 10.3390/ijms25126401.
5
Closed-loop fluid-fluid immiscibility in binary lipid-sterol membranes.
Proc Natl Acad Sci U S A. 2023 Jun 20;120(25):e2216002120. doi: 10.1073/pnas.2216002120. Epub 2023 Jun 14.
6
Role of Cholesterol and its Biosynthetic Precursors on Membrane Organization and Dynamics: A Fluorescence Approach.
J Membr Biol. 2023 Apr;256(2):189-197. doi: 10.1007/s00232-023-00278-w. Epub 2023 Feb 13.
7
Effect of Silica Microparticles on Interactions in Mono- and Multicomponent Membranes.
Int J Mol Sci. 2022 Oct 24;23(21):12822. doi: 10.3390/ijms232112822.
8
Dilatational and shear rheology of soluble and insoluble monolayers with a Langmuir trough.
J Colloid Interface Sci. 2023 Jan;629(Pt A):125-135. doi: 10.1016/j.jcis.2022.08.051. Epub 2022 Aug 13.
9
Cholesterol's Condensing Effect: Unpacking a Century-Old Mystery.
JACS Au. 2021 Dec 17;2(1):84-91. doi: 10.1021/jacsau.1c00493. eCollection 2022 Jan 24.
10
Bilayer aggregate microstructure determines viscoelasticity of lung surfactant suspensions.
Soft Matter. 2021 May 26;17(20):5170-5182. doi: 10.1039/d1sm00337b.

本文引用的文献

1
Sterol structure determines miscibility versus melting transitions in lipid vesicles.
Biophys J. 2005 Sep;89(3):1760-8. doi: 10.1529/biophysj.104.049635. Epub 2005 Jun 10.
3
Engineered lipids that cross-link the inner and outer leaflets of lipid bilayers.
Langmuir. 2004 Mar 16;20(6):2416-23. doi: 10.1021/la035817v.
5
Coupling field theory with continuum mechanics: a simulation of domain formation in giant unilamellar vesicles.
Biophys J. 2005 Jun;88(6):3855-69. doi: 10.1529/biophysj.105.059436. Epub 2005 Mar 25.
6
Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes.
Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3272-7. doi: 10.1073/pnas.0408215102. Epub 2005 Feb 18.
7
Effect of membrane characteristics on phase separation and domain formation in cholesterol-lipid mixtures.
Biophys J. 2005 Feb;88(2):916-24. doi: 10.1529/biophysj.104.052241. Epub 2004 Nov 12.
8
Miscibility of ternary mixtures of phospholipids and cholesterol in monolayers, and application to bilayer systems.
Biophys J. 2005 Jan;88(1):269-76. doi: 10.1529/biophysj.104.048439. Epub 2004 Oct 8.
9
Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanisms, both involving SCAP and Insigs.
J Biol Chem. 2004 Dec 10;279(50):52772-80. doi: 10.1074/jbc.M410302200. Epub 2004 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验