Oliva Romina, Cavallo Luigi, Tramontano Anna
Centro Linceo Interdisciplinare Beniamino Segre, Accademia dei Lincei, I-00165 Rome, Italy.
Nucleic Acids Res. 2006 Feb 6;34(3):865-79. doi: 10.1093/nar/gkj491. Print 2006.
Tertiary interactions are crucial in maintaining the tRNA structure and functionality. We used a combined sequence analysis and quantum mechanics approach to calculate accurate energies of the most frequent tRNA tertiary base pairing interactions. Our analysis indicates that six out of the nine classical tertiary interactions are held in place mainly by H-bonds between the bases. In the remaining three cases other effects have to be considered. Tertiary base pairing interaction energies range from -8 to -38 kcal/mol in yeast tRNA(Phe) and are estimated to contribute roughly 25% of the overall tRNA base pairing interaction energy. Six analyzed posttranslational chemical modifications were shown to have minor effect on the geometry of the tertiary interactions. Modifications that introduce a positive charge strongly stabilize the corresponding tertiary interactions. Non-additive effects contribute to the stability of base triplets.
三级相互作用对于维持tRNA的结构和功能至关重要。我们采用了序列分析与量子力学相结合的方法来计算最常见的tRNA三级碱基配对相互作用的精确能量。我们的分析表明,九个经典三级相互作用中的六个主要通过碱基之间的氢键维持在相应位置。在其余三种情况下,必须考虑其他效应。酵母tRNA(Phe)中三级碱基配对相互作用的能量范围为-8至-38千卡/摩尔,据估计其对tRNA碱基配对相互作用总能量的贡献约为25%。六个分析的翻译后化学修饰对三级相互作用的几何结构影响较小。引入正电荷的修饰能强烈稳定相应的三级相互作用。非加和效应有助于碱基三联体的稳定性。