Suppr超能文献

Amyloid peptides mediate hypoxic increase of L-type Ca2+ channels in central neurones.

作者信息

Webster N J, Ramsden M, Boyle J P, Pearson H A, Peers C

机构信息

Institute for Cardiovascular Research, Schools of Medicine, University of Leeds, Leeds LS2 9JT, UK.

出版信息

Neurobiol Aging. 2006 Mar;27(3):439-45. doi: 10.1016/j.neurobiolaging.2005.02.002.

Abstract

Prolonged hypoxia, encountered in individuals suffering from various cardiorespiratory diseases, enhances the likelihood of subsequently developing Alzheimer's disease (AD). However, the underlying mechanisms are unknown, as are the mechanisms of neurodegeneration of amyloid beta peptides (AbetaPs), although the latter involves disruption of Ca2+ homeostasis. Here, immunohistochemistry demonstrated that hypoxia increased production of AbetaPs, an effect which was prevented by inhibition of either beta or gamma secretase, the enzymes required for liberation of AbetaP from its precursor protein. Whole-cell patch clamp recordings showed that hypoxia selectively increased functional expression of L-type Ca2+ channels. This was prevented by inhibition of either beta or gamma secretase, indicating that hypoxic channel up-regulation is dependent upon AbetaP formation. Our results indicate for the first time that hypoxia promotes AbetaP formation in central neurons, and show that this leads to abnormally high selective expression of L-type Ca2+ channels whose blockade has previously been shown to be neuroprotective in AD models. These findings provide a cellular basis for understanding the increased incidence of AD following prolonged hypoxia.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验