Endo Satoshi, Schmidt Torsten C
Center for Applied Geoscience (ZAG), Eberhard-Karls-University Tübingen, Germany.
Environ Sci Technol. 2006 Jan 15;40(2):536-45. doi: 10.1021/es0515811.
Equilibrium partitioning between nonaqueous phase liquids (NAPLs) and water is a governing process for contaminants leaching from NAPLs. Conventional prediction methods, such as Raoult's law and single-parameter linear free energy relationship (SP-LFER), are inaccurate for compounds with polar functional groups. Therefore, this study introduces a polyparameter linear free energy relationship (PP-LFER) approach as a more general tool to predict NAPL-water partitioning coefficients. Our approach was evaluated using 441 experimental partitioning data from 30 references. Experimental fuel-water partitioning coefficients were generally well reproduced by existing PP-LFERs for pure solvents using either a volume-fraction weighted sum of partitioning coefficients K (linear model, R2 = 0.983, root-mean-squared error [rmse] = 0.23) or a volume-fraction weighted sum of log K (log linear model, R2 = 0.976, rmse = 0.28). Using the linear model, estimations were, in most cases, within a factor of 2 from the experimental values, regardless of the type of compounds and the presence of a fuel additive. In contrast, the log linear model considerably underestimated partitioning coefficients in the presence of strong solute-solvent hydrogen bonding. For coal tar-water partitioning coefficients (Kcoal tar/w), new PP-LFER equations were calculated based on experimental log Kcoal tar/w values of 35 compounds. The resulting regression equation was log Kcoal tar/w = 0.40(+/-0.33) + 0.34(+/-0.32)E+ 0.61(+/-0.57)S-0.55-(+/-0.61)A-5.07(+/-0.61)B + 3.22(+/-0.35)V with the rmse equal to 0.21, where E, S, A, B, and Vare Abraham's solute descriptors. Partitioning coefficients for phenol and alcohols, calculated by the above equation, were much closer to the experimental values than to those estimated by the SP-LFER approach with octanol-water partitioning coefficients. The values of the coefficients also provide insight into the properties of coal tar in terms of molecular interactions with solutes. Consequently, using the approaches presented in this study, complex organic mixture-water partitioning coefficients of a wide range of organic compounds with varying polarity can be reasonably estimated.
非水相液体(NAPLs)与水之间的平衡分配是控制污染物从NAPLs中浸出的过程。传统的预测方法,如拉乌尔定律和单参数线性自由能关系(SP-LFER),对于具有极性官能团的化合物不准确。因此,本研究引入了多参数线性自由能关系(PP-LFER)方法作为预测NAPL-水分配系数的更通用工具。我们的方法使用来自30篇参考文献的441个实验分配数据进行评估。对于纯溶剂,使用分配系数K的体积分数加权和(线性模型,R2 = 0.983,均方根误差[rmse] = 0.23)或log K的体积分数加权和(对数线性模型,R2 = 0.976,rmse = 0.28),现有的PP-LFERs通常能很好地重现实验燃料-水分配系数。使用线性模型,在大多数情况下,估计值与实验值相差不超过2倍,无论化合物类型和燃料添加剂的存在情况如何。相比之下,对数线性模型在存在强溶质-溶剂氢键的情况下会显著低估分配系数。对于煤焦油-水分配系数(Kcoal tar/w),基于35种化合物的实验log Kcoal tar/w值计算了新的PP-LFER方程。得到的回归方程为log Kcoal tar/w = 0.40(±0.33)+ 0.34(±0.32)E + 0.61(±0.57)S - 0.55 -(±0.61)A - 5.07(±0.61)B + 3.22(±0.35)V,rmse等于0.21,其中E、S、A、B和V是亚伯拉罕溶质描述符。通过上述方程计算的苯酚和醇的分配系数比使用辛醇-水分配系数的SP-LFER方法估计的值更接近实验值。这些系数的值也从与溶质的分子相互作用方面提供了对煤焦油性质的深入了解。因此,使用本研究中提出的方法,可以合理估计各种极性不同的有机化合物的复杂有机混合物-水分配系数。