Ong Yew-Soon, Lim Meng-Hiot, Zhu Ning, Wong Kok-Wai
School of Computer Engineering, Nanyang Technological University, Singapore 639798.
IEEE Trans Syst Man Cybern B Cybern. 2006 Feb;36(1):141-52. doi: 10.1109/tsmcb.2005.856143.
Adaptation of parameters and operators represents one of the recent most important and promising areas of research in evolutionary computations; it is a form of designing self-configuring algorithms that acclimatize to suit the problem in hand. Here, our interests are on a recent breed of hybrid evolutionary algorithms typically known as adaptive memetic algorithms (MAs). One unique feature of adaptive MAs is the choice of local search methods or memes and recent studies have shown that this choice significantly affects the performances of problem searches. In this paper, we present a classification of memes adaptation in adaptive MAs on the basis of the mechanism used and the level of historical knowledge on the memes employed. Then the asymptotic convergence properties of the adaptive MAs considered are analyzed according to the classification. Subsequently, empirical studies on representatives of adaptive MAs for different type-level meme adaptations using continuous benchmark problems indicate that global-level adaptive MAs exhibit better search performances. Finally we conclude with some promising research directions in the area.
参数和算子的自适应是进化计算领域近年来最重要且最具前景的研究方向之一;它是一种设计能自我配置的算法的形式,这些算法会适应手头的问题。在此,我们关注的是最近一类通常被称为自适应混合算法(MAs)的混合进化算法。自适应混合算法的一个独特特征是局部搜索方法或模因的选择,最近的研究表明,这种选择会显著影响问题搜索的性能。在本文中,我们基于所使用的机制以及所采用模因的历史知识水平,对自适应混合算法中的模因自适应进行了分类。然后根据该分类分析了所考虑的自适应混合算法的渐近收敛特性。随后,针对使用连续基准问题的不同类型 - 层次模因自适应的自适应混合算法代表进行的实证研究表明,全局层次的自适应混合算法表现出更好的搜索性能。最后,我们总结了该领域一些有前景的研究方向。