Zhang Zizhao, Wong Weng Kee, Tan Kay Chen
Department of Biostatistics, University of California at Los Angeles, Los Angeles, California 90095-1772, U.S.A.
Department of Computer Science, City University of Hong Kong, Hong Kong.
Memet Comput. 2020 Sep;12(3):219-233. doi: 10.1007/s12293-020-00305-6. Epub 2020 Jun 23.
This paper proposes a novel enhancement for Competitive Swarm Optimizer (CSO) by mutating loser particles (agents) from the swarm to increase the swarm diversity and improve space exploration capability, namely Competitive Swarm Optimizer with Mutated Agents (CSO-MA). The selection mechanism is carried out so that it does not retard the search if agents are exploring in promising areas. Simulation results show that CSO-MA has a better exploration-exploitation balance than CSO and generally outperforms CSO, which is one of the state-of-the-art metaheuristic algorithms for optimization. We show additionally that it also generally outperforms swarm based types of algorithms and an exemplary and popular non-swarm based algorithm called Cuckoo search, without requiring a lot more CPU time. We apply CSO-MA to find a -optimal approximate design for a high-dimensional optimal design problem when other swarm algorithms were not able to. As applications, we use the CSO-MA to search various optimal designs for a series of high-dimensional statistical models. The proposed CSO-MA algorithm is a general-purpose optimizing tool and can be directly amended to find other types of optimal designs for nonlinear models, including optimal exact designs under a convex or non-convex criterion.
本文提出了一种对竞争型群体优化算法(CSO)的新颖改进方法,即通过对群体中的失败粒子(智能体)进行变异来增加群体多样性并提高空间探索能力,也就是带变异智能体的竞争型群体优化算法(CSO-MA)。其选择机制的执行方式是,当智能体在有前景的区域进行探索时,不会阻碍搜索。仿真结果表明,CSO-MA比CSO具有更好的探索-利用平衡,并且总体上优于CSO,CSO是用于优化的最先进的元启发式算法之一。我们还表明,它通常也优于基于群体的算法类型以及一种名为布谷鸟搜索的典型且流行的非群体算法,而且不需要更多的CPU时间。当其他群体算法无法解决时,我们应用CSO-MA来找到一个高维优化设计问题的最优近似设计。作为应用,我们使用CSO-MA为一系列高维统计模型搜索各种最优设计。所提出的CSO-MA算法是一种通用的优化工具,可以直接修改以找到非线性模型的其他类型的最优设计,包括在凸或非凸准则下的最优精确设计。