Suppr超能文献

带有变异个体的竞争群体优化算法用于寻找具有多个相互作用因子的非线性回归模型的最优设计

Competitive Swarm Optimizer with Mutated Agents for Finding Optimal Designs for Nonlinear Regression Models with Multiple Interacting Factors.

作者信息

Zhang Zizhao, Wong Weng Kee, Tan Kay Chen

机构信息

Department of Biostatistics, University of California at Los Angeles, Los Angeles, California 90095-1772, U.S.A.

Department of Computer Science, City University of Hong Kong, Hong Kong.

出版信息

Memet Comput. 2020 Sep;12(3):219-233. doi: 10.1007/s12293-020-00305-6. Epub 2020 Jun 23.

Abstract

This paper proposes a novel enhancement for Competitive Swarm Optimizer (CSO) by mutating loser particles (agents) from the swarm to increase the swarm diversity and improve space exploration capability, namely Competitive Swarm Optimizer with Mutated Agents (CSO-MA). The selection mechanism is carried out so that it does not retard the search if agents are exploring in promising areas. Simulation results show that CSO-MA has a better exploration-exploitation balance than CSO and generally outperforms CSO, which is one of the state-of-the-art metaheuristic algorithms for optimization. We show additionally that it also generally outperforms swarm based types of algorithms and an exemplary and popular non-swarm based algorithm called Cuckoo search, without requiring a lot more CPU time. We apply CSO-MA to find a -optimal approximate design for a high-dimensional optimal design problem when other swarm algorithms were not able to. As applications, we use the CSO-MA to search various optimal designs for a series of high-dimensional statistical models. The proposed CSO-MA algorithm is a general-purpose optimizing tool and can be directly amended to find other types of optimal designs for nonlinear models, including optimal exact designs under a convex or non-convex criterion.

摘要

本文提出了一种对竞争型群体优化算法(CSO)的新颖改进方法,即通过对群体中的失败粒子(智能体)进行变异来增加群体多样性并提高空间探索能力,也就是带变异智能体的竞争型群体优化算法(CSO-MA)。其选择机制的执行方式是,当智能体在有前景的区域进行探索时,不会阻碍搜索。仿真结果表明,CSO-MA比CSO具有更好的探索-利用平衡,并且总体上优于CSO,CSO是用于优化的最先进的元启发式算法之一。我们还表明,它通常也优于基于群体的算法类型以及一种名为布谷鸟搜索的典型且流行的非群体算法,而且不需要更多的CPU时间。当其他群体算法无法解决时,我们应用CSO-MA来找到一个高维优化设计问题的最优近似设计。作为应用,我们使用CSO-MA为一系列高维统计模型搜索各种最优设计。所提出的CSO-MA算法是一种通用的优化工具,可以直接修改以找到非线性模型的其他类型的最优设计,包括在凸或非凸准则下的最优精确设计。

相似文献

2
A competitive swarm optimizer for large scale optimization.
IEEE Trans Cybern. 2015 Feb;45(2):191-204. doi: 10.1109/TCYB.2014.2322602. Epub 2014 May 20.
3
4
Competitive Swarm Optimizer Based Gateway Deployment Algorithm in Cyber-Physical Systems.
Sensors (Basel). 2017 Jan 22;17(1):209. doi: 10.3390/s17010209.
5
Neural Net-Enhanced Competitive Swarm Optimizer for Large-Scale Multiobjective Optimization.
IEEE Trans Cybern. 2024 Jun;54(6):3502-3515. doi: 10.1109/TCYB.2023.3287596. Epub 2024 May 30.
6
A Novel Crow Swarm Optimization Algorithm (CSO) Coupling Particle Swarm Optimization (PSO) and Crow Search Algorithm (CSA).
Comput Intell Neurosci. 2021 May 22;2021:6686826. doi: 10.1155/2021/6686826. eCollection 2021.
8
Efficient Large-Scale Multiobjective Optimization Based on a Competitive Swarm Optimizer.
IEEE Trans Cybern. 2020 Aug;50(8):3696-3708. doi: 10.1109/TCYB.2019.2906383. Epub 2019 Apr 3.
9
-optimal designs for hierarchical linear models: an equivalence theorem and a nature-inspired meta-heuristic algorithm.
Soft comput. 2021;25(21):13549-13565. doi: 10.1007/s00500-021-06061-0. Epub 2021 Aug 7.
10
Cat Swarm Optimization algorithm for optimal linear phase FIR filter design.
ISA Trans. 2013 Nov;52(6):781-94. doi: 10.1016/j.isatra.2013.07.009. Epub 2013 Aug 16.

引用本文的文献

2
3
-optimal designs for hierarchical linear models: an equivalence theorem and a nature-inspired meta-heuristic algorithm.
Soft comput. 2021;25(21):13549-13565. doi: 10.1007/s00500-021-06061-0. Epub 2021 Aug 7.

本文引用的文献

1
A Distributed Swarm Optimizer With Adaptive Communication for Large-Scale Optimization.
IEEE Trans Cybern. 2020 Jul;50(7):3393-3408. doi: 10.1109/TCYB.2019.2904543. Epub 2019 Apr 9.
2
Bare bones particle swarm optimization with scale matrix adaptation.
IEEE Trans Cybern. 2014 Sep;44(9):1567-78. doi: 10.1109/TCYB.2013.2290223.
3
A competitive swarm optimizer for large scale optimization.
IEEE Trans Cybern. 2015 Feb;45(2):191-204. doi: 10.1109/TCYB.2014.2322602. Epub 2014 May 20.
4
Particle swarm optimization with scale-free interactions.
PLoS One. 2014 May 23;9(5):e97822. doi: 10.1371/journal.pone.0097822. eCollection 2014.
5
Convergence analysis of particle swarm optimizer and its improved algorithm based on velocity differential evolution.
Comput Intell Neurosci. 2013;2013:384125. doi: 10.1155/2013/384125. Epub 2013 Aug 28.
6
Classification of adaptive memetic algorithms: a comparative study.
IEEE Trans Syst Man Cybern B Cybern. 2006 Feb;36(1):141-52. doi: 10.1109/tsmcb.2005.856143.
7
The value of information and optimal clinical trial design.
Stat Med. 2005 Jun 30;24(12):1791-806. doi: 10.1002/sim.2069.
8
Comparison of multiobjective evolutionary algorithms: empirical results.
Evol Comput. 2000 Summer;8(2):173-95. doi: 10.1162/106365600568202.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验