Suppr超能文献

基于功能的任意姿势人体扫描分割。

A functional-based segmentation of human body scans in arbitrary postures.

作者信息

Werghi Naoufel, Xiao Yijun, Siebert Jan Paul

机构信息

College of Information Technology, Dubai University College, United Arab Emirates.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2006 Feb;36(1):153-65. doi: 10.1109/tsmcb.2005.854503.

Abstract

This paper presents a general framework that aims to address the task of segmenting three-dimensional (3-D) scan data representing the human form into subsets which correspond to functional human body parts. Such a task is challenging due to the articulated and deformable nature of the human body. A salient feature of this framework is that it is able to cope with various body postures and is in addition robust to noise, holes, irregular sampling and rigid transformations. Although whole human body scanners are now capable of routinely capturing the shape of the whole body in machine readable format, they have not yet realized their potential to provide automatic extraction of key body measurements. Automated production of anthropometric databases is a prerequisite to satisfying the needs of certain industrial sectors (e.g., the clothing industry). This implies that in order to extract specific measurements of interest, whole body 3-D scan data must be segmented by machine into subsets corresponding to functional human body parts. However, previously reported attempts at automating the segmentation process suffer from various limitations, such as being restricted to a standard specific posture and being vulnerable to scan data artifacts. Our human body segmentation algorithm advances the state of the art to overcome the above limitations and we present experimental results obtained using both real and synthetic data that confirm the validity, effectiveness, and robustness of our approach.

摘要

本文提出了一个通用框架,旨在解决将表示人体形态的三维(3-D)扫描数据分割成与人体功能部位相对应的子集的任务。由于人体具有关节连接和可变形的特性,这样的任务具有挑战性。该框架的一个显著特点是它能够应对各种身体姿势,并且对噪声、孔洞、不规则采样和刚体变换具有鲁棒性。尽管现在全身扫描仪能够常规地以机器可读格式捕获全身形状,但它们尚未实现自动提取关键身体测量值的潜力。自动化生成人体测量数据库是满足某些工业部门(如服装业)需求的先决条件。这意味着为了提取感兴趣的特定测量值,全身3-D扫描数据必须由机器分割成与人体功能部位相对应的子集。然而,先前报道的自动化分割过程的尝试存在各种局限性,例如仅限于标准特定姿势且易受扫描数据伪影的影响。我们的人体分割算法推动了技术水平的提升,以克服上述局限性,并且我们展示了使用真实数据和合成数据获得的实验结果,这些结果证实了我们方法的有效性、高效性和鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验