Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai 200433, China.
IEEE Trans Pattern Anal Mach Intell. 2012 Nov;34(11):2164-76. doi: 10.1109/TPAMI.2011.260.
Gait Energy Image (GEI) is an efficient template for human identification by gait. However, such a template loses temporal information in a gait sequence, which is critical to the performance of gait recognition. To address this issue, we develop a novel temporal template, named Chrono-Gait Image (CGI), in this paper. The proposed CGI template first extracts the contour in each gait frame, followed by encoding each of the gait contour images in the same gait sequence with a multichannel mapping function and compositing them to a single CGI. To make the templates robust to a complex surrounding environment, we also propose CGI-based real and synthetic temporal information preserving templates by using different gait periods and contour distortion techniques. Extensive experiments on three benchmark gait databases indicate that, compared with the recently published gait recognition approaches, our CGI-based temporal information preserving approach achieves competitive performance in gait recognition with robustness and efficiency.
步态能量图像(GEI)是一种通过步态进行人体识别的有效模板。然而,这样的模板会丢失步态序列中的时间信息,而时间信息对于步态识别的性能至关重要。针对这个问题,我们在本文中开发了一种新的时间模板,称为时变步态图像(CGI)。所提出的 CGI 模板首先提取每个步态帧中的轮廓,然后使用多通道映射函数对相同步态序列中的每个步态轮廓图像进行编码,并将它们组合成单个 CGI。为了使模板对复杂的周围环境具有鲁棒性,我们还提出了基于 CGI 的真实和合成时间信息保持模板,方法是使用不同的步态周期和轮廓变形技术。在三个基准步态数据库上的广泛实验表明,与最近发表的步态识别方法相比,我们基于 CGI 的时间信息保持方法在具有鲁棒性和效率的步态识别中具有竞争力的性能。