Li Ji-Guang, Wang Xiaohui, Watanabe Kenji, Ishigaki Takamasa
National Institute for Materials Science, Advanced Materials Laboratory, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.
J Phys Chem B. 2006 Jan 26;110(3):1121-7. doi: 10.1021/jp053329l.
Eu3+-doped TiO2 luminescent nanocrystals have been synthesized in this work via Ar/O2 thermal plasma oxidizing mists of liquid precursors containing titanium tetra-n-butoxide and europium(III) nitrate, with varied O2 input in the plasma sheath (10-90 L/min) and Eu3+ addition in the precursor solution (Eu/(Ti + Eu) = 0-5 atom%). The resultant nanopowders are mixtures of the anatase (30-36 nm) and rutile (64-83 nm) polymorphs in the studied range, but the rutile fraction increases steadily at a higher Eu3+ addition, as revealed by X-ray diffraction (XRD) and Raman spectroscopy, because of the creation of oxygen vacancies in the TiO2 gas clusters by substitutional Eu3+ doping. The amount of Eu3+ that can be doped into a TiO2 lattice was limited up to 0.5 atom%, above which Eu2Ti2O7 pyrochlore was formed in the final products. High resolution transmission electron microscopy (HRTEM) observation indicates that the particles are dense and have sizes ranging from several nanometers up to 180 nm. Efficient nonradiative energy transfer from the TiO2 host to Eu3+ ions, which was seldom reported in the wet-chemically derived nanoparticles or thin films of the current system, was confirmed by combined studies of excitation, UV-vis (ultraviolet-visible), and PL (photoluminescence) spectroscopy. As a consequence of this, bright red emissions were observed from the plasma-generated nanopowders either by exciting the TiO2 host with UV light shorter than 405 nm or by directly exciting Eu3+ at a wavelength beyond the absorption edge (405 nm) of TiO2.
在本工作中,通过Ar/O₂热等离子体氧化含有四丁氧基钛和硝酸铕(III)的液体前驱体雾滴,在等离子体鞘层中改变O₂输入量(10 - 90 L/min)以及在前驱体溶液中添加Eu³⁺(Eu/(Ti + Eu) = 0 - 5原子%),合成了Eu³⁺掺杂的TiO₂发光纳米晶体。X射线衍射(XRD)和拉曼光谱表明,在所研究的范围内,所得纳米粉末是锐钛矿(30 - 36 nm)和金红石(64 - 83 nm)多晶型的混合物,但在较高的Eu³⁺添加量下,金红石比例稳步增加,这是由于Eu³⁺取代掺杂在TiO₂气体团簇中产生了氧空位。能够掺杂到TiO₂晶格中的Eu³⁺量限制在0.5原子%以内,超过该比例,最终产物中会形成Eu₂Ti₂O₇烧绿石。高分辨率透射电子显微镜(HRTEM)观察表明,颗粒致密,尺寸范围从几纳米到180 nm。通过激发、紫外可见(UV-vis)和光致发光(PL)光谱的联合研究证实,在当前体系的湿化学衍生纳米颗粒或薄膜中很少报道的从TiO₂主体到Eu³⁺离子的高效非辐射能量转移。因此,通过用波长小于405 nm的紫外光激发TiO₂主体或直接在TiO₂吸收边缘(405 nm)以外的波长激发Eu³⁺,在等离子体产生的纳米粉末中观察到了明亮的红色发射。