Hey Henrik, Haslund-Vinding Peter
Medicinsk Afdeling, Vejle Sygehus, DK-7100 Vejle.
Ugeskr Laeger. 2006 Jan 30;168(5):470-5.
We investigated the area under the curve (AUC) as a measure of the bioavailability of ethanol in healthy volunteers drinking six alcoholic beverages of different types. Furthermore, we investigated the correlation between the ethanol concentration in the blood and the breath test.
Twelve healthy volunteers (seven females, five males) consumed six drinks of different types in a crossover design after a six-hour fast. The men ingested 36 g of ethanol and the women 24 g. Venous blood was obtained for determination of serum ethanol and glucose concentration at 0, 30, 60, 90, 120 and 180 minutes postdosing, and at the same time a breath alcohol test was done using an alcoholometer.
The AUC of ethanol differed significantly between pure ethanol and the three beverages red wine, sparkling wine and Smirnoff Ice (p < 0.01). The glucose and insulin concentrations increased by factors of 2 and 4, respectively, 60 minutes after drinking beer or Smirnoff Ice, respectively (p < 0.05). We found a high correlation between the ethanol concentration in the blood and the breath test, r 2 = 0.77, r = 0.87 (p < 0.005). Using the blood alcohol concentration as a "gold standard", we found that the risk of obtaining a false- positive breath test was 1% at the legal limit for driving in Denmark (0.5%). Conversely, 59% of the participants with a blood alcohol level > or = 0.5% showed a negative (false negative).
This investigation shows that the type of alcoholic beverage consumed determines the amount of alcohol absorbed. Furthermore, the different drinks caused different changes in the glucose and insulin concentrations, which might be important in connection with alcohol-induced disturbances in carbohydrate metabolism (e.g., hypo- and hyperglycaemia). Our data indicate that the alcoholometer breath test was an acceptable screening method to estimate the blood alcohol level and to measure the amount of ethanol ingested. However, for evidental purposes during prosecution of drunk drivers, more sophisticated breath test instruments are desirable.
我们研究了曲线下面积(AUC),以此作为饮用六种不同类型酒精饮料的健康志愿者体内乙醇生物利用度的一种度量。此外,我们还研究了血液中乙醇浓度与呼气测试之间的相关性。
12名健康志愿者(7名女性,5名男性)在禁食6小时后,采用交叉设计饮用六种不同类型的饮品。男性摄入36克乙醇,女性摄入24克。在给药后0、30、60、90、120和180分钟采集静脉血,用于测定血清乙醇和葡萄糖浓度,同时使用酒精计进行呼气酒精测试。
纯乙醇与三种饮品(红酒、起泡酒和斯米诺冰醇)的乙醇AUC存在显著差异(p < 0.01)。饮用啤酒或斯米诺冰醇60分钟后,葡萄糖和胰岛素浓度分别增加了2倍和4倍(p < 0.05)。我们发现血液中乙醇浓度与呼气测试之间存在高度相关性,r² = 0.77,r = 0.87(p < 0.005)。以血液酒精浓度作为“金标准”,我们发现在丹麦的法定驾驶限值(0.5%)下,呼气测试出现假阳性的风险为1%。相反,血液酒精水平≥0.5%的参与者中有59%的呼气测试结果为阴性(假阴性)。
本研究表明,饮用的酒精饮料类型决定了酒精的吸收量。此外,不同饮品会导致葡萄糖和胰岛素浓度发生不同变化,这可能与酒精引起的碳水化合物代谢紊乱(如低血糖和高血糖)有关。我们的数据表明,酒精计呼气测试是一种可接受的筛查方法,用于估计血液酒精水平和测量摄入的乙醇量。然而,在起诉醉酒驾驶者时,为了提供证据,更精密的呼气测试仪器是可取的。