Suppr超能文献

使用多电极阵列对琼脂糖结构进行光热蚀刻,对基于单细胞的电生理测量的神经网络进行模式修改。

Pattern modification of a neuronal network for individual-cell-based electrophysiological measurement using photothermal etching of an agarose architecture with a multielectrode array.

作者信息

Suzuki I, Sugio Y, Moriguchi H, Hattori A, Yasuda K, Jimbo Y

机构信息

Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Japan.

出版信息

IEE Proc Nanobiotechnol. 2004 Jun;151(3):116-21. doi: 10.1049/ip-nbt:20040690.

Abstract

A new type of individual-cell-based on-chip multielectrode array (MEA) cell-cultivation system with an agarose microchamber (AMC) array for topographical control of the network patterns of a living neuronal network has been developed. The advantages of this system are that it allows control of the cell positions and numbers for cultivation using AMCs, as well as easy and flexible control of the pattern of connections between the AMCs through photothermal etching where a portion of the agarose layer is melted with a 1480 nm infrared laser beam. With adequate laser power, narrow micrometer-order grooves (microchannels) can easily be fabricated that can be used to combine neighbouring AMCs to enable topographical control of the neural network pattern. Using this system, an individual-cell-based neural network pattern was formed of rat hippocampal cells within the AMC array without cells escaping from the electrode positions in the microchamber during an eight-day cultivation, and could record cell firing in response to 1.5 V, 500 kHz stimulation through an electrode. This demonstrated the potential of the on-chip AMCMEA cell cultivation system for long-term single-cell-based electrophysiological measurement of a neural network system.

摘要

一种新型的基于单细胞的片上多电极阵列(MEA)细胞培养系统已被开发出来,该系统带有用于对活体神经元网络的网络模式进行地形控制的琼脂糖微腔(AMC)阵列。该系统的优点在于,它允许使用AMC控制细胞培养的位置和数量,并且通过光热蚀刻可以轻松灵活地控制AMC之间的连接模式,在光热蚀刻过程中,琼脂糖层的一部分会被1480纳米红外激光束熔化。在适当的激光功率下,可以轻松制造出狭窄的微米级凹槽(微通道),这些微通道可用于连接相邻的AMC,从而实现对神经网络模式的地形控制。使用该系统,在AMC阵列内由大鼠海马细胞形成了基于单细胞的神经网络模式,在为期八天的培养过程中,细胞没有从微腔内的电极位置逸出,并且能够通过电极记录细胞对1.5伏、500千赫兹刺激的放电情况。这证明了片上AMC-MEA细胞培养系统在基于单细胞的神经网络系统长期电生理测量方面的潜力。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验