Suppr超能文献

利用琼脂糖结构的逐步光热蚀刻对神经网络方向进行修改。

Modification of a neuronal network direction using stepwise photo-thermal etching of an agarose architecture.

作者信息

Suzuki Ikurou, Sugio Yoshihiro, Moriguchi Hiroyuki, Jimbo Yasuhiko, Yasuda Kenji

机构信息

Department of Life Sciences, Graduate school of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 JAPAN.

出版信息

J Nanobiotechnology. 2004 Jul 1;2(1):7. doi: 10.1186/1477-3155-2-7.

Abstract

Control over spatial distribution of individual neurons and the pattern of neural network provides an important tool for studying information processing pathways during neural network formation. Moreover, the knowledge of the direction of synaptic connections between cells in each neural network can provide detailed information on the relationship between the forward and feedback signaling. We have developed a method for topographical control of the direction of synaptic connections within a living neuronal network using a new type of individual-cell-based on-chip cell-cultivation system with an agarose microchamber array (AMCA). The advantages of this system include the possibility to control positions and number of cultured cells as well as flexible control of the direction of elongation of axons through stepwise melting of narrow grooves. Such micrometer-order microchannels are obtained by photo-thermal etching of agarose where a portion of the gel is melted with a 1064-nm infrared laser beam. Using this system, we created neural network from individual Rat hippocampal cells. We were able to control elongation of individual axons during cultivation (from cells contained within the AMCA) by non-destructive stepwise photo-thermal etching. We have demonstrated the potential of our on-chip AMCA cell cultivation system for the controlled development of individual cell-based neural networks.

摘要

对单个神经元的空间分布和神经网络模式的控制为研究神经网络形成过程中的信息处理途径提供了重要工具。此外,了解每个神经网络中细胞之间突触连接的方向可以提供有关前馈和反馈信号之间关系的详细信息。我们开发了一种方法,利用一种新型的基于单个细胞的芯片上细胞培养系统——琼脂糖微腔阵列(AMCA),对活神经元网络内突触连接的方向进行地形控制。该系统的优点包括能够控制培养细胞的位置和数量,以及通过逐步熔化窄槽来灵活控制轴突伸长的方向。这种微米级的微通道是通过对琼脂糖进行光热蚀刻获得的,其中一部分凝胶用1064纳米红外激光束熔化。利用该系统,我们从单个大鼠海马细胞创建了神经网络。通过非破坏性的逐步光热蚀刻,我们能够在培养过程中(从AMCA内的细胞)控制单个轴突的伸长。我们已经证明了我们的芯片上AMCA细胞培养系统在基于单个细胞的神经网络的可控发育方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/893c/455688/03684193f6cd/1477-3155-2-7-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验