Suppr超能文献

使用非破坏性微针光热微加工技术在琼脂糖凝胶中培养时,神经元网络的逐步形成。

Stepwise neuronal network pattern formation in agarose gel during cultivation using non-destructive microneedle photothermal microfabrication.

机构信息

Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan.

Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan.

出版信息

Sci Rep. 2021 Jul 19;11(1):14656. doi: 10.1038/s41598-021-93988-x.

Abstract

Conventional neuronal network pattern formation techniques cannot control the arrangement of axons and dendrites because network structures must be fixed before neurite differentiation. To overcome this limitation, we developed a non-destructive stepwise microfabrication technique that can be used to alter microchannels within agarose to guide neurites during elongation. Micropatterns were formed in thin agarose layer coating of a cultivation dish using the tip of a 0.7 [Formula: see text]-diameter platinum-coated glass microneedle heated by a focused 1064-nm wavelength infrared laser, which has no absorbance of water. As the size of the heat source was 0.7 [Formula: see text], which is smaller than the laser wavelength, the temperature fell to 45 [Formula: see text] within a distance of 7.0 [Formula: see text] from the edge of the etched agarose microchannel. We exploited the fast temperature decay property to guide cell-to-cell connection during neuronal network cultivation. The first neurite of a hippocampal cell from a microchamber was guided to a microchannel leading to the target neuron with stepwise etching of the micrometer resolution microchannel in the agarose layer, and the elongated neurites were not damaged by the heat of etching. The results indicate the potential of this new technique for fully direction-controlled on-chip neuronal network studies.

摘要

传统的神经元网络模式形成技术无法控制轴突和树突的排列,因为在神经突分化之前,网络结构必须固定。为了克服这一限制,我们开发了一种非破坏性的分步微加工技术,可用于改变琼脂糖内的微通道,以在伸长过程中引导神经突。使用聚焦在 1064nm 波长红外激光下加热的直径为 0.7μm 的铂涂玻璃微针的尖端,在培养皿的薄琼脂糖层涂层上形成微图案,该激光对水没有吸收。由于热源尺寸为 0.7μm,小于激光波长,因此在距刻蚀琼脂糖微通道边缘 7.0μm 的距离内,温度降至 45°C。我们利用快速的温度衰减特性在神经元网络培养过程中引导细胞间连接。从微腔中的海马细胞的第一个神经突被引导到通向目标神经元的微通道,通过在琼脂糖层中分步刻蚀具有亚微米分辨率的微通道来实现,并且伸长的神经突不会被刻蚀的热量损坏。结果表明,这种新技术具有用于完全控制芯片上神经元网络研究的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43ef/8289850/d135bf69896a/41598_2021_93988_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验