Suppr超能文献

晚期癌症患者样本中预备性悲伤的人口统计学和临床预测因素。

Demographic and clinical predictors of preparatory grief in a sample of advanced cancer patients.

作者信息

Mystakidou Kyriaki, Tsilika Eleni, Parpa Efi, Katsouda Emmanuela, Sakkas Palvos, Galanos Antonis, Vlahos Lambros

机构信息

Department of Radiology, Areteion Hospital, School of Medicine, University of Athens, Vas. Sofias 76, 115 28 Athens, Greece.

出版信息

Psychooncology. 2006 Sep;15(9):828-33. doi: 10.1002/pon.1029.

Abstract

BACKGROUND

Preparatory grief encompasses grief for losses that have already occurred, are currently being experienced, and losses that will or might ensue in the future after the death, as a consequence of it.

AIM

To examine the relative contribution of demographic and clinical variables in predicting cancer patients' preparatory grief as recorded from the Preparatory Grief in Advanced Cancer Patients (PGAC) scale. Moreover, researchers were interested in determining whether these dimensions were independently and uniquely associated with preparatory grief.

METHODS

Two hundred advanced cancer patients treated in a Pain Relief and Palliative Care Unit completed the PGAC scale, while researchers recorded data on demographic characteristics, disease status and treatment regimen.

RESULTS

The analyses showed that the most significant correlations were found between preparatory grief and age (r = -0.227, p = 0.001), gender (p = 0.006), family status (p = 0.019), performance status (p = 0.010), surgery (p = 0.029), opioids (p = 0.019), and diagnosis (p = 0.038). In the prediction of preparatory grief, the contribution of age, performance status, history of other surgery, gender and opioids is high.

CONCLUSIONS

Awareness of the specific patients' demographic and medical characteristics, such as old age, poor performance status, history of other surgery, female gender, and strong opioids, contribute to the prediction of patients' preparatory grief.

摘要

背景

预备性悲伤包括对已经发生、正在经历的损失,以及在死亡后将会或可能随之而来的损失的悲伤。

目的

研究人口统计学和临床变量在预测癌症患者预备性悲伤方面的相对贡献,该预备性悲伤通过晚期癌症患者预备性悲伤(PGAC)量表进行记录。此外,研究人员还想确定这些维度是否与预备性悲伤独立且独特相关。

方法

在疼痛缓解与姑息治疗科接受治疗的200名晚期癌症患者完成了PGAC量表,同时研究人员记录了人口统计学特征、疾病状态和治疗方案的数据。

结果

分析表明,预备性悲伤与年龄(r = -0.227,p = 0.001)、性别(p = 0.006)、家庭状况(p = 0.019)、体能状态(p = 0.010)、手术(p = 0.029)、阿片类药物(p = 0.019)和诊断(p = 0.038)之间存在最显著的相关性。在预测预备性悲伤方面,年龄、体能状态、其他手术史、性别和阿片类药物的贡献较大。

结论

了解特定患者的人口统计学和医学特征,如老年、体能状态差、其他手术史、女性性别和强效阿片类药物,有助于预测患者的预备性悲伤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验