Suppr超能文献

基于核磁共振解析结构的概率模型预测蛋白质连续二级结构。

Prediction of protein continuum secondary structure with probabilistic models based on NMR solved structures.

作者信息

Bodén Mikael, Yuan Zheng, Bailey Timothy L

机构信息

School of Information Technology and Electrical Engineering, The University of Queensland, QLD 4072, St Lucia, Australia.

出版信息

BMC Bioinformatics. 2006 Feb 14;7:68. doi: 10.1186/1471-2105-7-68.

Abstract

BACKGROUND

The structure of proteins may change as a result of the inherent flexibility of some protein regions. We develop and explore probabilistic machine learning methods for predicting a continuum secondary structure, i.e. assigning probabilities to the conformational states of a residue. We train our methods using data derived from high-quality NMR models.

RESULTS

Several probabilistic models not only successfully estimate the continuum secondary structure, but also provide a categorical output on par with models directly trained on categorical data. Importantly, models trained on the continuum secondary structure are also better than their categorical counterparts at identifying the conformational state for structurally ambivalent residues.

CONCLUSION

Cascaded probabilistic neural networks trained on the continuum secondary structure exhibit better accuracy in structurally ambivalent regions of proteins, while sustaining an overall classification accuracy on par with standard, categorical prediction methods.

摘要

背景

由于某些蛋白质区域固有的灵活性,蛋白质的结构可能会发生变化。我们开发并探索了概率机器学习方法来预测连续二级结构,即给残基的构象状态分配概率。我们使用从高质量核磁共振模型获得的数据来训练我们的方法。

结果

几种概率模型不仅成功地估计了连续二级结构,还提供了与直接在分类数据上训练的模型相当的分类输出。重要的是,在连续二级结构上训练的模型在识别结构模糊残基的构象状态方面也比其分类对应模型更好。

结论

在连续二级结构上训练的级联概率神经网络在蛋白质结构模糊区域表现出更高的准确性,同时保持与标准分类预测方法相当的整体分类准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bca6/1386714/f29ae965ef74/1471-2105-7-68-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验