Kumar Niranjan, Srivastava Rakesh
School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, India.
Brief Bioinform. 2024 Mar 27;25(3). doi: 10.1093/bib/bbae042.
In this review article, we explore the transformative impact of deep learning (DL) on structural bioinformatics, emphasizing its pivotal role in a scientific revolution driven by extensive data, accessible toolkits and robust computing resources. As big data continue to advance, DL is poised to become an integral component in healthcare and biology, revolutionizing analytical processes. Our comprehensive review provides detailed insights into DL, featuring specific demonstrations of its notable applications in bioinformatics. We address challenges tailored for DL, spotlight recent successes in structural bioinformatics and present a clear exposition of DL-from basic shallow neural networks to advanced models such as convolution, recurrent, artificial and transformer neural networks. This paper discusses the emerging use of DL for understanding biomolecular structures, anticipating ongoing developments and applications in the realm of structural bioinformatics.
在这篇综述文章中,我们探讨了深度学习(DL)对结构生物信息学的变革性影响,强调了其在由海量数据、易用的工具包和强大的计算资源驱动的科学革命中的关键作用。随着大数据的不断发展,深度学习有望成为医疗保健和生物学中不可或缺的一部分,彻底改变分析过程。我们的全面综述提供了对深度学习的详细见解,重点介绍了其在生物信息学中显著应用的具体示例。我们讨论了针对深度学习的挑战,突出了结构生物信息学领域最近的成功,并清晰地阐述了深度学习——从基本的浅层神经网络到卷积、循环、人工和变压器神经网络等先进模型。本文讨论了深度学习在理解生物分子结构方面的新兴应用,展望了结构生物信息学领域正在进行的发展和应用。