Willoughby Debbie, Cooper Dermot M F
Department of Pharmacology, Tennis Court Road, University of Cambridge, CB2 1PD, UK.
J Cell Sci. 2006 Mar 1;119(Pt 5):828-36. doi: 10.1242/jcs.02812. Epub 2006 Feb 14.
The spatial and temporal complexity of Ca2+ signalling is central to the regulation of a diverse range of cellular processes. The decoding of dynamic Ca2+ signals is, in part, mediated by the ability of Ca2+ to regulate other second messengers, including cyclic AMP (cAMP). A number of kinetic models (including our own) predict that interdependent Ca2+ and cAMP oscillations can be generated. A previous study in Xenopus neurons illustrated prolonged, low-frequency cAMP oscillations during bursts of Ca2+ transients. However, the detection of more dynamic Ca2+ driven changes in cAMP has, until recently, been limited by the availability of suitable cAMP probes with high temporal resolution. We have used a newly developed FRET-based cAMP indicator comprised of the cAMP binding domain of Epac-1 to examine interplay between Ca2+ and cAMP dynamics. This probe was recently used in excitable cells to reveal an inverse relationship between cAMP and Ca2+ oscillations as a consequence of Ca2+-dependent activation of phosphodiesterase 1 (PDE1). Here, we have used human embryonic kidney (HEK293) cells expressing the type 8 adenylyl cyclase (AC8) to examine whether dynamic Ca2+ changes can mediate phasic cAMP oscillations as a consequence of Ca2+-stimulated AC activity. During artificial or agonist-induced Ca2+ oscillations we detected fast, periodic changes in cAMP that depended upon Ca2+ stimulation of AC8 with subsequent PKA-mediated phosphodiesterase 4 (PDE4) activity. Carbachol (10 microM) evoked cAMP transients with a peak frequency of approximately 3 minute(-1), demonstrating phasic oscillations in cAMP and Ca2+ in response to physiological stimuli. Furthermore, by imposing a range of Ca2+-oscillation frequencies, we demonstrate that AC8 acts as a low-pass filter for high-frequency Ca2+ events, enhancing the regulatory options available to this signalling pathway.
Ca2+信号的时空复杂性是多种细胞过程调控的核心。动态Ca2+信号的解码部分是由Ca2+调节其他第二信使(包括环磷酸腺苷(cAMP))的能力介导的。许多动力学模型(包括我们自己的模型)预测,可以产生相互依赖的Ca2+和cAMP振荡。先前在非洲爪蟾神经元中的一项研究表明,在Ca2+瞬变爆发期间,cAMP会出现持续时间长、频率低的振荡。然而,直到最近,检测由Ca2+驱动的更动态的cAMP变化还受到具有高时间分辨率的合适cAMP探针可用性的限制。我们使用了一种新开发的基于荧光共振能量转移(FRET)的cAMP指示剂,该指示剂由Epac-1的cAMP结合结构域组成,以研究Ca2+和cAMP动力学之间的相互作用。这种探针最近在可兴奋细胞中使用,以揭示由于磷酸二酯酶1(PDE1)的Ca2+依赖性激活,cAMP和Ca2+振荡之间存在反比关系。在这里,我们使用表达8型腺苷酸环化酶(AC8)的人胚肾(HEK293)细胞来研究动态Ca2+变化是否可以作为Ca2+刺激的AC活性的结果介导阶段性cAMP振荡。在人工或激动剂诱导的Ca2+振荡期间,我们检测到cAMP的快速、周期性变化,这取决于Ca2+对AC8的刺激以及随后蛋白激酶A(PKA)介导的磷酸二酯酶4(PDE4)活性。卡巴胆碱(10微摩尔)诱发cAMP瞬变,峰值频率约为3次/分钟,表明cAMP和Ca2+对生理刺激有阶段性振荡。此外,通过施加一系列Ca2+振荡频率,我们证明AC8作为高频Ca2+事件的低通滤波器,增强了该信号通路可用的调节选项。