Seemann Myriam, Tse Sum Bui Bernadette, Wolff Murielle, Miginiac-Maslow Myroslawa, Rohmer Michel
Université Louis Pasteur/CNRS, Institut de Chimie LC3/UMR 7177, 4 rue Blaise Pascal, 67070 Strasbourg Cedex, France.
FEBS Lett. 2006 Mar 6;580(6):1547-52. doi: 10.1016/j.febslet.2006.01.082. Epub 2006 Feb 2.
In the methylerythritol phosphate pathway for isoprenoid biosynthesis, the GcpE/IspG enzyme catalyzes the conversion of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate into (E)-4-hydroxy-3-methylbut-2-enyl diphosphate. This reaction requires a double one-electron transfer involving a [4Fe-4S] cluster. A thylakoid preparation from spinach chloroplasts was capable in the presence of light to act as sole electron donor for the plant GcpE Arabidopsis thaliana in the absence of any pyridine nucleotide. This is in sharp contrast with the bacterial Escherichia coli GcpE, which requires flavodoxin/flavodoxin reductase and NADPH as reducing system and represents the first proof that the electron flow from photosynthesis can directly act in phototrophic organisms as reducer in the 2-C-methyl-d-erythritol 4-phosphate pathway, most probably via ferredoxin, in the absence of any reducing cofactor. In the dark, the plant GcpE catalysis requires in addition of ferredoxin NADP(+)/ferredoxin oxido-reductase and NADPH as electron shuttle.
在用于类异戊二烯生物合成的甲基赤藓糖醇磷酸途径中,GcpE/IspG酶催化2-C-甲基-D-赤藓糖醇2,4-环二磷酸转化为(E)-4-羟基-3-甲基丁-2-烯基二磷酸。该反应需要涉及[4Fe-4S]簇的双单电子转移。在光照条件下,菠菜叶绿体的类囊体制剂能够在没有任何吡啶核苷酸的情况下作为植物GcpE拟南芥的唯一电子供体。这与细菌大肠杆菌GcpE形成鲜明对比,后者需要黄素氧还蛋白/黄素氧还蛋白还原酶和NADPH作为还原系统,这首次证明了在没有任何还原辅因子的情况下,光合作用的电子流可以在光合生物中直接作为2-C-甲基-D-赤藓糖醇4-磷酸途径中的还原剂起作用,很可能是通过铁氧还蛋白。在黑暗中,植物GcpE催化还需要添加铁氧还蛋白NADP(+)/铁氧还蛋白氧化还原酶和NADPH作为电子穿梭体。