Nagy Vanja, Bozdagi Ozlem, Matynia Anna, Balcerzyk Marcin, Okulski Pawel, Dzwonek Joanna, Costa Rui M, Silva Alcino J, Kaczmarek Leszek, Huntley George W
Fishberg Department of Neuroscience, The Mount Sinai School of Medicine, New York, New York 10029-6574, USA.
J Neurosci. 2006 Feb 15;26(7):1923-34. doi: 10.1523/JNEUROSCI.4359-05.2006.
Matrix metalloproteinases (MMPs) are extracellular proteases that have well recognized roles in cell signaling and remodeling in many tissues. In the brain, their activation and function are customarily associated with injury or pathology. Here, we demonstrate a novel role for MMP-9 in hippocampal synaptic physiology, plasticity, and memory. MMP-9 protein levels and proteolytic activity are rapidly increased by stimuli that induce late-phase long-term potentiation (L-LTP) in area CA1. Such regulation requires NMDA receptors and protein synthesis. Blockade of MMP-9 pharmacologically prevents induction of L-LTP selectively; MMP-9 plays no role in, nor is regulated during, other forms of short-term synaptic potentiation or long-lasting synaptic depression. Similarly, in slices from MMP-9 null-mutant mice, hippocampal LTP, but not long-term depression, is impaired in magnitude and duration; adding recombinant active MMP-9 to null-mutant slices restores the magnitude and duration of LTP to wild-type levels. Activated MMP-9 localizes in part to synapses and modulates hippocampal synaptic physiology through integrin receptors, because integrin function-blocking reagents prevent an MMP-9-mediated potentiation of synaptic signal strength. The fundamental importance of MMP-9 function in modulating hippocampal synaptic physiology and plasticity is underscored by behavioral impairments in hippocampal-dependent memory displayed by MMP-9 null-mutant mice. Together, these data reveal new functions for MMPs in synaptic and behavioral plasticity.
基质金属蛋白酶(MMPs)是细胞外蛋白酶,在许多组织的细胞信号传导和重塑中发挥着公认的作用。在大脑中,它们的激活和功能通常与损伤或病理状况相关。在此,我们证明了MMP - 9在海马突触生理学、可塑性和记忆方面具有新的作用。诱导CA1区晚期长时程增强(L - LTP)的刺激可迅速提高MMP - 9的蛋白水平和蛋白水解活性。这种调节需要NMDA受体和蛋白质合成。药理学上阻断MMP - 9可选择性地阻止L - LTP的诱导;MMP - 9在其他形式的短期突触增强或长期突触抑制过程中既不发挥作用,也不受调控。同样,在来自MMP - 9基因敲除小鼠的脑片中,海马长时程增强(LTP)的幅度和持续时间受损,但长期抑制不受影响;向基因敲除小鼠脑片中添加重组活性MMP - 9可将LTP的幅度和持续时间恢复到野生型水平。活化的MMP - 9部分定位于突触,并通过整合素受体调节海马突触生理学,因为整合素功能阻断试剂可阻止MMP - 9介导的突触信号强度增强。MMP - 9基因敲除小鼠在海马依赖性记忆方面的行为缺陷突出了MMP - 9功能在调节海马突触生理学和可塑性方面的根本重要性。总之,这些数据揭示了MMPs在突触和行为可塑性方面的新功能。