Nägerl U Valentin, Eberhorn Nicola, Cambridge Sidney B, Bonhoeffer Tobias
Max-Planck-Institute of Neurobiology, Am Klopferspitz 18, 82152 München-Martinsried, Germany.
Neuron. 2004 Dec 2;44(5):759-67. doi: 10.1016/j.neuron.2004.11.016.
Dendritic spines on pyramidal neurons receive the vast majority of excitatory input and are considered electrobiochemical processing units, integrating and compartmentalizing synaptic input. Following synaptic plasticity, spines can undergo morphological plasticity, which possibly forms the structural basis for long-term changes in neuronal circuitry. Here, we demonstrate that spines on CA1 pyramidal neurons from organotypic slice cultures show bidirectional activity-dependent morphological plasticity. Using two-photon time-lapse microscopy, we observed that low-frequency stimulation induced NMDA receptor-dependent spine retractions, whereas theta burst stimulation led to the formation of new spines. Moreover, without stimulation the number of spine retractions was on the same order of magnitude as the stimulus-induced spine gain or loss. Finally, we found that the ability of neurons to eliminate spines in an activity-dependent manner decreased with developmental age. Taken together, our data show that hippocampal neurons can undergo bidirectional morphological plasticity; spines are formed and eliminated in an activity-dependent way.
锥体神经元上的树突棘接收绝大多数兴奋性输入,被认为是电生化处理单元,整合并分隔突触输入。在突触可塑性之后,树突棘可发生形态可塑性,这可能构成神经元回路长期变化的结构基础。在这里,我们证明来自器官型切片培养物的CA1锥体神经元上的树突棘表现出双向活动依赖性形态可塑性。使用双光子延时显微镜,我们观察到低频刺激诱导NMDA受体依赖性树突棘回缩,而theta爆发刺激导致新树突棘的形成。此外,在没有刺激的情况下,树突棘回缩的数量与刺激诱导的树突棘增加或减少处于相同的数量级。最后,我们发现神经元以活动依赖性方式消除树突棘的能力随着发育年龄而降低。综上所述,我们的数据表明海马神经元可以经历双向形态可塑性;树突棘以活动依赖性方式形成和消除。