Cortes J M, Torres J J, Marro J, Garrido P L, Kappen H J
Institute Carlos I for Theoretical and Computational Physics and Department of Electromagnetism and Physics of Matter, University of Granada, 18071 Granada, Spain.
Neural Comput. 2006 Mar;18(3):614-33. doi: 10.1162/089976606775623342.
We study both analytically and numerically the effect of presynaptic noise on the transmission of information in attractor neural networks. The noise occurs on a very short timescale compared to that for the neuron dynamics and it produces short-time synaptic depression. This is inspired in recent neurobiological findings that show that synaptic strength may either increase or decrease on a short timescale depending on presynaptic activity. We thus describe a mechanism by which fast presynaptic noise enhances the neural network sensitivity to an external stimulus. The reason is that, in general, presynaptic noise induces nonequilibrium behavior and, consequently, the space of fixed points is qualitatively modified in such a way that the system can easily escape from the attractor. As a result, the model shows, in addition to pattern recognition, class identification and categorization, which may be relevant to the understanding of some of the brain complex tasks.
我们通过解析和数值方法研究了突触前噪声对吸引子神经网络中信息传递的影响。与神经元动力学的时间尺度相比,这种噪声出现在非常短的时间尺度上,并且会产生短时突触抑制。这一研究灵感来源于最近的神经生物学发现,即突触强度可能会根据突触前活动在短时间尺度上增强或减弱。因此,我们描述了一种机制,通过该机制快速的突触前噪声可增强神经网络对外部刺激的敏感性。原因在于,一般来说,突触前噪声会诱发非平衡行为,结果,不动点空间会在性质上发生改变,使得系统能够轻易地从吸引子中逃逸。因此,该模型除了具有模式识别、类别识别和分类功能外,还可能与理解大脑的一些复杂任务相关。