Institute Carlos I for Theoretical and Computational Physics, University of Granada, Granada, 18010, Spain.
School of Mathematics, University of Birmingham, Edgbaston, B15 2TT, UK.
Nat Commun. 2018 Jun 8;9(1):2236. doi: 10.1038/s41467-018-04537-6.
A fundamental question in neuroscience is how structure and function of neural systems are related. We study this interplay by combining a familiar auto-associative neural network with an evolving mechanism for the birth and death of synapses. A feedback loop then arises leading to two qualitatively different types of behaviour. In one, the network structure becomes heterogeneous and dissasortative, and the system displays good memory performance; furthermore, the structure is optimised for the particular memory patterns stored during the process. In the other, the structure remains homogeneous and incapable of pattern retrieval. These findings provide an inspiring picture of brain structure and dynamics that is compatible with experimental results on early brain development, and may help to explain synaptic pruning. Other evolving networks-such as those of protein interactions-might share the basic ingredients for this feedback loop and other questions, and indeed many of their structural features are as predicted by our model.
神经科学中的一个基本问题是神经系统的结构和功能是如何相关的。我们通过将一个熟悉的自联想神经网络与突触产生和死亡的进化机制相结合来研究这种相互作用。然后会产生一个反馈回路,导致两种性质不同的行为。在一种情况下,网络结构变得异质和去关联,系统表现出良好的记忆性能;此外,结构是针对存储在过程中的特定记忆模式进行优化的。在另一种情况下,结构保持同质,无法进行模式检索。这些发现为大脑结构和动态提供了一个令人鼓舞的图景,与早期大脑发育的实验结果相兼容,并可能有助于解释突触修剪。其他进化网络,如蛋白质相互作用网络,可能具有这种反馈回路和其他问题的基本要素,事实上,它们的许多结构特征都如我们的模型所预测的那样。