Zykov V S, Brandtstädter H, Bordiougov G, Engel H
Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, D-10623 Berlin, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Dec;72(6 Pt 2):065201. doi: 10.1103/PhysRevE.72.065201. Epub 2005 Dec 9.
The drift velocity field describing spiral wave motion in an excitable medium subjected to a two-point feedback control is derived and analyzed. Although for a small distance between the two measuring points a discrete set of circular shaped attractors are observed, an increase of induces a sequence of global bifurcations that destroy this attractor structure. These bifurcations result in the appearance of smooth unrestricted lines with zero drift velocity, similarly to zero intensity lines under destructive interference in linear optics. The existence of such unusual equilibrium manifolds is demonstrated analytically and confirmed by computations with the Oregonator model as well as by experiments with the light-sensitive Belousov-Zhabotinsky reaction.
推导并分析了描述在两点反馈控制下的可激发介质中螺旋波运动的漂移速度场。尽管在两个测量点之间的距离较小时会观察到一组离散的圆形吸引子,但距离的增加会引发一系列全局分岔,从而破坏这种吸引子结构。这些分岔导致出现具有零漂移速度的平滑无限制线,类似于线性光学中相消干涉下的零强度线。通过解析证明了这种异常平衡流形的存在,并通过使用俄勒冈振子模型的计算以及对光敏Belousov-Zhabotinsky反应的实验得到了证实。