Dutta Sumana, Steinbock Oliver
Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 2):056213. doi: 10.1103/PhysRevE.83.056213. Epub 2011 May 20.
Spiral waves in excitable systems decay to drifting defects if forced by high-frequency wave trains. Using the Barkley model we analyze the drift velocity in planar wave trains as a function of wave frequency. Within two antiparallel, planar wave trains of equal frequency a defect is pushed into the collision region where it stops. Within two circular wave fields, however, it continues its drift in a direction perpendicular to the axis connecting the pacemakers. Depending on the forcing frequency and the initial position, this motion occurs either away from or toward the pacemaker axis. Three circular wave fields can be used to position the defect at a unique point close to the center of the pacemaker triangle. The results are also observed in experiments with the Belousov-Zhabotinsky reaction.
如果受到高频波列的强迫,可激发系统中的螺旋波会衰减为漂移缺陷。我们使用巴克利模型分析平面波列中的漂移速度与波频率的函数关系。在两个频率相等的反平行平面波列中,一个缺陷会被推到碰撞区域并在那里停止。然而,在两个圆形波场中,它会继续在垂直于连接起搏器轴线的方向上漂移。根据强迫频率和初始位置,这种运动会远离或朝向起搏器轴线。三个圆形波场可用于将缺陷定位在靠近起搏器三角形中心的一个独特点上。在别洛索夫 - 扎博廷斯基反应的实验中也观察到了这些结果。