Carpentier David, Pujol Pierre, Giering Kay-Uwe
Laboratoire de Physique de l'Ecole Normale Supérieure de Lyon, 46, Allée d'Italie, 69007 Lyon, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Dec;72(6 Pt 2):066101. doi: 10.1103/PhysRevE.72.066101. Epub 2005 Dec 1.
In this paper we discuss the criticality of a quantum Ising spin chain with competing random ferromagnetic and antiferromagnetic couplings. Quantum fluctuations are introduced via random local transverse fields. First we consider the chain with couplings between first and second neighbors only and then generalize the study to a quantum analog of the Viana-Bray model, defined on a small world random lattice. We use the Dasgupta-Ma decimation technique, both analytically and numerically, and focus on the scaling of the lattice topology, whose determination is necessary to define any infinite disorder transition beyond the chain. In the first case, at the transition the model renormalizes towards the chain, with the infinite disorder fixed point described by Fisher. This corresponds to the irrelevance of the competition induced by the second neighbors couplings. As opposed to this case, this infinite disorder transition is found to be unstable towards the introduction of an arbitrary small density of long range couplings in the small world models.
在本文中,我们讨论了具有竞争随机铁磁和反铁磁耦合的量子伊辛自旋链的临界性。通过随机局部横向场引入量子涨落。首先,我们考虑仅具有第一和第二近邻之间耦合的链,然后将研究推广到在小世界随机晶格上定义的维亚纳 - 布雷模型的量子类似物。我们在解析和数值上都使用达斯古普塔 - 马抽取技术,并专注于晶格拓扑的标度,其确定对于定义链之外的任何无限无序转变是必要的。在第一种情况下,在转变时模型重整化为链,其无限无序不动点由费希尔描述。这对应于第二近邻耦合引起的竞争的无关性。与这种情况相反,在小世界模型中发现这种无限无序转变对于引入任意小密度的长程耦合是不稳定的。