Suppr超能文献

使用非晶格无杀伤算法对扩散限制聚集模型中的多重标度进行测试。

Test of multiscaling in a diffusion-limited-aggregation model using an off-lattice killing-free algorithm.

作者信息

Menshutin Anton Yu, Shchur Lev N

机构信息

Landau Institute for Theoretical Physics, 142432 Chernogolovka, Russia.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jan;73(1 Pt 1):011407. doi: 10.1103/PhysRevE.73.011407. Epub 2006 Jan 19.

Abstract

We test the multiscaling issue of diffusion-limited-aggregation (DLA) clusters using a modified algorithm. This algorithm eliminates killing the particles at the death circle. Instead, we return them to the birth circle at a random relative angle taken from the evaluated distribution. In addition, we use a two-level hierarchical memory model that allows using large steps in conjunction with an off-lattice realization of the model. Our algorithm still seems to stay in the framework of the original DLA model. We present an accurate estimate of the fractal dimensions based on the data for a hundred clusters with 50 million particles each. We find that multiscaling cannot be ruled out. We also find that the fractal dimension is a weak self-averaging quantity. In addition, the fractal dimension, if calculated using the harmonic measure, is a nonmonotonic function of the cluster radius. We argue that the controversies in the data interpretation can be due to the weak self-averaging and the influence of intrinsic noise.

摘要

我们使用一种改进算法来测试扩散限制凝聚(DLA)簇的多重标度问题。该算法不再在死亡圆处杀死粒子,而是将它们以从评估分布中随机选取的相对角度返回到出生圆。此外,我们使用了一种两级层次记忆模型,该模型允许在模型的非晶格实现中结合大步长使用。我们的算法似乎仍处于原始DLA模型的框架内。我们基于每个包含5000万个粒子的一百个簇的数据,给出了分形维数的精确估计。我们发现不能排除多重标度的存在。我们还发现分形维数是一个弱自平均量。此外,如果使用调和测度计算,分形维数是簇半径的非单调函数。我们认为数据解释中的争议可能是由于弱自平均和固有噪声的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验