Suppr超能文献

平行线路电极上的电润湿薄膜。

Electrowetting films on parallel line electrodes.

作者信息

Yeo Leslie Y, Chang Hsueh-Chia

机构信息

Micro/Nanophysics Research Laboratory, Department of Mechanical Engineering, Monash University, Clayton, Victoria 3800, Australia.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jan;73(1 Pt 1):011605. doi: 10.1103/PhysRevE.73.011605. Epub 2006 Jan 20.

Abstract

A lubrication analysis is presented for the spreading dynamics of a high permittivity polar dielectric liquid drop due to an electric field sustained by parallel line electrode pairs separated by a distance R(e). The normal Maxwell stress, concentrated at the tip region near the apparent three-phase contact line, produces a negative capillary pressure that is responsible for pulling out a thin finger of liquid film ahead of the macroscopic drop, analogous to that obtained in self-similar gravity spreading. This front-running electrowetting film maintains a constant contact angle and volume as its front position advances in time t by the universal law 0.43R(e)(t/T(cap))1/3, independent of the drop dimension, surface tension, and wettability. T(cap)=pi(2)mu(l)R(e)/8(epsilon0epsilonl)V2 is the electrocapillary time scale where mu(l) is the liquid viscosity, epsilon0epsilonl the liquid permittivity, and V the applied voltage. This spreading dynamics for the electrowetting film is much faster than the rest of the drop; after a short transient, the latter spreads over the electrowetting film by draining into it. By employing matched asymptotics, we are able to elucidate this unique mechanism, justified by the reasonable agreement with numerical and experimental results. Unlike the usual electrowetting-on-dielectric configuration where the field singularity at the contact line produces a static change in the contact angle consistent with the Lippmann equation, we show that the parallel electrode configuration produces a bulk negative Maxwell pressure within the drop. This Maxwell pressure increases in magnitude toward the contact line due to field confinement and is responsible for a bulk pressure gradient that gives rise to a front-running spontaneous electrowetting film.

摘要

本文针对高介电常数极性介电液滴在由间距为R(e)的平行线电极对维持的电场作用下的铺展动力学进行了润滑分析。集中在表观三相接触线附近尖端区域的法向麦克斯韦应力产生负毛细管压力,该压力导致在宏观液滴前方拉出一层薄液膜指状物,类似于在自相似重力铺展中得到的情况。当该前沿自驱动电润湿膜的前沿位置随时间t按照通用定律0.43R(e)(t/T(cap))1/3推进时,其保持恒定的接触角和体积,且与液滴尺寸、表面张力和润湿性无关。T(cap)=π(2)μ(l)R(e)/8(ε0εl)V2是电毛细管时间尺度,其中μ(l)是液体粘度,ε0εl是液体介电常数,V是施加电压。电润湿膜的这种铺展动力学比液滴的其余部分快得多;在短暂的瞬态之后,液滴的其余部分通过排入电润湿膜而在其上铺展。通过采用匹配渐近法,我们能够阐明这一独特机制,该机制与数值和实验结果的合理吻合证明了其合理性。与通常的介质上电润湿配置不同,在后者中接触线处的场奇点会产生与 Lippmann 方程一致的接触角静态变化,我们表明平行电极配置会在液滴内产生体负麦克斯韦压力。由于场限制,该麦克斯韦压力的大小朝着接触线增加,并导致体压力梯度,从而产生前沿自驱动电润湿膜。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验