Zambrini Roberta, Papoff Francesco
SUPA, Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, UK.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jan;73(1 Pt 2):016611. doi: 10.1103/PhysRevE.73.016611. Epub 2006 Jan 23.
We consider diffusive nonlinear systems with nonlocal two-points coupling, generally induced by misalignment in optical feedback. We expand the stability analysis in F. Papoff and R. Zambrini [Phys. Rev. Lett. 94, 243903 (2005)] to determine convective and absolute thresholds. Nonlocality leads to different effects in comparison to well-known problems with drift, as the existence of opposite phase and group velocities for some modes and an instability region. The theoretical predictions are in agreement with numerical results in a nonlocal system with saturable nonlinearity over wide parameter regions. The knowledge of the stability diagram for any uniform state allows us to interpret the rich dynamics due to the interplay between finite size, noise, and multiple states.
我们考虑具有非局部两点耦合的扩散非线性系统,这种耦合通常由光反馈中的失准引起。我们扩展了F. Papoff和R. Zambrini [《物理评论快报》94, 243903 (2005)]中的稳定性分析,以确定对流阈值和绝对阈值。与具有漂移的著名问题相比,非局部性会导致不同的效应,例如某些模式存在相反的相速度和群速度以及一个不稳定区域。理论预测与具有饱和非线性的非局部系统在宽参数区域内的数值结果一致。对于任何均匀态的稳定性图的了解,使我们能够解释由于有限尺寸、噪声和多态之间的相互作用而产生的丰富动力学。