Chen Shihua
Department of Physics, Southeast University, Nanjing 210096, China.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Aug;78(2 Pt 2):025601. doi: 10.1103/PhysRevE.78.025601. Epub 2008 Aug 26.
Using soliton amplitude and phase ansatzes, a theory is proposed for searching for stationary soliton solutions to the cubic-quintic complex Ginzburg-Landau (CGL) equation. For arbitrary combinations of system parameters, our approach allows the existence of dissipative solitons together with their specific soliton characteristics to be determined, and we demonstrate this explicitly for the case of a pulsed fiber laser system. The regimes of existence of dissipative solitons and their rules of evolution in a complicated five-dimensional parameter space are also analyzed. This work may open other research opportunities in diverse areas of nonlinear dynamics governed by the CGL equation, and may impact significantly on experimental design.
利用孤子振幅和相位假设,提出了一种寻找立方 - 五次复金兹堡 - 朗道(CGL)方程定常孤子解的理论。对于系统参数的任意组合,我们的方法能够确定耗散孤子的存在及其特定的孤子特性,并且我们针对脉冲光纤激光系统的情况进行了明确演示。还分析了耗散孤子在复杂五维参数空间中的存在区域及其演化规则。这项工作可能会在由CGL方程支配的非线性动力学的不同领域开启其他研究机会,并可能对实验设计产生重大影响。