Suppr超能文献

二级结构的氨基酸倾向受蛋白质结构类别的影响。

Amino acid propensities for secondary structures are influenced by the protein structural class.

作者信息

Costantini Susan, Colonna Giovanni, Facchiano Angelo M

机构信息

Laboratorio di Bioinformatica e Biologia Computazionale, Istituto di Scienze dell'Alimentazione, CNR, Avellino, Italy.

出版信息

Biochem Biophys Res Commun. 2006 Apr 7;342(2):441-51. doi: 10.1016/j.bbrc.2006.01.159. Epub 2006 Feb 8.

Abstract

Amino acid propensities for secondary structures were used since the 1970s, when Chou and Fasman evaluated them within datasets of few tens of proteins and developed a method to predict secondary structure of proteins, still in use despite prediction methods having evolved to very different approaches and higher reliability. Propensity for secondary structures represents an intrinsic property of amino acid, and it is used for generating new algorithms and prediction methods, therefore our work has been aimed to investigate what is the best protein dataset to evaluate the amino acid propensities, either larger but not homogeneous or smaller but homogeneous sets, i.e., all-alpha, all-beta, alpha-beta proteins. As a first analysis, we evaluated amino acid propensities for helix, beta-strand, and coil in more than 2000 proteins from the PDBselect dataset. With these propensities, secondary structure predictions performed with a method very similar to that of Chou and Fasman gave us results better than the original one, based on propensities derived from the few tens of X-ray protein structures available in the 1970s. In a refined analysis, we subdivided the PDBselect dataset of proteins in three secondary structural classes, i.e., all-alpha, all-beta, and alpha-beta proteins. For each class, the amino acid propensities for helix, beta-strand, and coil have been calculated and used to predict secondary structure elements for proteins belonging to the same class by using resubstitution and jackknife tests. This second round of predictions further improved the results of the first round. Therefore, amino acid propensities for secondary structures became more reliable depending on the degree of homogeneity of the protein dataset used to evaluate them. Indeed, our results indicate also that all algorithms using propensities for secondary structure can be still improved to obtain better predictive results.

摘要

自20世纪70年代以来,人们就开始使用氨基酸对二级结构的倾向性,当时周和法斯曼在几十种蛋白质的数据集中对其进行了评估,并开发了一种预测蛋白质二级结构的方法,尽管预测方法已经发展到非常不同的方法且可靠性更高,但该方法仍在使用。二级结构倾向性代表了氨基酸的一种内在属性,它被用于生成新的算法和预测方法,因此我们的工作旨在研究评估氨基酸倾向性的最佳蛋白质数据集是什么,是更大但不均匀的数据集,还是更小但均匀的数据集,即全α、全β、α-β蛋白质。作为初步分析,我们评估了来自PDBselect数据集的2000多种蛋白质中螺旋、β链和卷曲的氨基酸倾向性。利用这些倾向性,采用与周和法斯曼的方法非常相似的方法进行二级结构预测,得到的结果比基于20世纪70年代可用的几十种X射线蛋白质结构得出的倾向性的原始结果更好。在精细分析中,我们将PDBselect蛋白质数据集细分为三个二级结构类别,即全α、全β和α-β蛋白质。对于每个类别,计算了螺旋、β链和卷曲的氨基酸倾向性,并通过留一法和刀切法测试,用于预测属于同一类别的蛋白质的二级结构元件。第二轮预测进一步改善了第一轮的结果。因此,根据用于评估二级结构的蛋白质数据集的同质性程度,氨基酸对二级结构的倾向性变得更加可靠。事实上,我们的结果还表明,所有使用二级结构倾向性的算法仍可改进以获得更好的预测结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验