Tan Jiahua, Geng Ling, Yazlovitskaya Eugenia M, Hallahan Dennis E
Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-5671, USA.
Cancer Res. 2006 Feb 15;66(4):2320-7. doi: 10.1158/0008-5472.CAN-05-2700.
The vascular endothelium plays a critical role in the response of cancer to ionizing radiation. Activation of the phosphoinositide-3-kinase/Akt pathway is one initial signaling event in irradiated endothelial cells. Specifically, a low dose of ionizing radiation (3 Gy) induces phosphorylation of Akt at Ser473 in the vascular endothelium within minutes of irradiation. However, signaling events that are downstream of Akt have not been well defined. Here, we show that phosphorylation of the Akt downstream target glycogen synthase kinase-3beta (GSK-3beta) at Ser9 also occurred within minutes of exposure to ionizing radiation. In addition, ionizing radiation caused the dissociation of GSK-3beta from the cell membrane, consistent with the inactivation of GSK-3beta enzyme activity. Overexpression of the dominant negative mutant Akt attenuated GSK-3beta phosphorylation at Ser9 and enhanced radiation-induced apoptosis. X-irradiated endothelial cells formed capillaries in both in vitro and in vivo models, whereas overexpression of the dominant negative mutant Akt inhibited capillary tubule formation. Studies using GSK-3beta antagonists showed that GSK-3beta activity was required for apoptosis in endothelial cells treated simultaneously with Akt antagonists and radiation. In mouse vascular models, radiation-induced microvascular destruction in response to Akt antagonists also required GSK-3beta function. These data indicate that on exposure of vascular endothelium to ionizing radiation, activation of Akt signaling contributes to GSK-3beta inhibition, which in turn promotes endothelial cell survival and capillary formation. Thus, pharmacologic regulation of Akt/GSK-3beta signaling may present a new approach to the radiation response in the tumor microvasculature.
血管内皮在癌症对电离辐射的反应中起关键作用。磷酸肌醇-3-激酶/蛋白激酶B(PI3K/Akt)信号通路的激活是受辐射内皮细胞的一个初始信号事件。具体而言,低剂量电离辐射(3 Gy)在照射后几分钟内即可诱导血管内皮中Akt的丝氨酸473位点磷酸化。然而,Akt下游的信号事件尚未完全明确。在此,我们发现,暴露于电离辐射几分钟内,Akt下游靶点糖原合酶激酶-3β(GSK-3β)的丝氨酸9位点也会发生磷酸化。此外,电离辐射导致GSK-3β从细胞膜解离,这与GSK-3β酶活性的失活一致。显性负性突变型Akt的过表达减弱了GSK-3β丝氨酸9位点的磷酸化,并增强了辐射诱导的细胞凋亡。X射线照射的内皮细胞在体外和体内模型中均可形成毛细血管,而显性负性突变型Akt的过表达则抑制了毛细血管小管的形成。使用GSK-3β拮抗剂的研究表明,在同时用Akt拮抗剂和辐射处理的内皮细胞中,细胞凋亡需要GSK-3β的活性。在小鼠血管模型中,辐射诱导的微血管破坏对Akt拮抗剂的反应也需要GSK-3β的功能。这些数据表明,血管内皮暴露于电离辐射时,Akt信号通路的激活导致GSK-3β受到抑制,进而促进内皮细胞存活和毛细血管形成。因此,对Akt/GSK-3β信号通路进行药理学调控可能为肿瘤微血管的辐射反应提供一种新方法。