Bressler Steven L, Tognoli Emmanuelle
Center for Complex Systems & Brain Sciences, Florida Atlantic University, Boca Raton, USA.
Int J Psychophysiol. 2006 May;60(2):139-48. doi: 10.1016/j.ijpsycho.2005.12.008. Epub 2006 Feb 21.
Large-scale neural networks are thought to be an essential substrate for the implementation of cognitive function by the brain. If so, then a thorough understanding of cognition is not possible without knowledge of how the large-scale neural networks of cognition (neurocognitive networks) operate. Of necessity, such understanding requires insight into structural, functional, and dynamical aspects of network operation, the intimate interweaving of which may be responsible for the intricacies of cognition. Knowledge of anatomical structure is basic to understanding how neurocognitive networks operate. Phylogenetically and ontogenetically determined patterns of synaptic connectivity form a structural network of brain areas, allowing communication between widely distributed collections of areas. The function of neurocognitive networks depends on selective activation of anatomically linked cortical and subcortical areas in a wide variety of configurations. Large-scale functional networks provide the cooperative processing which gives expression to cognitive function. The dynamics of neurocognitive network function relates to the evolving patterns of interacting brain areas that express cognitive function in real time. This article considers the proposition that a basic similarity of the structural, functional, and dynamical features of all neurocognitive networks in the brain causes them to function according to common operational principles. The formation of neural context through the coordinated mutual constraint of multiple interacting cortical areas, is considered as a guiding principle underlying all cognitive functions. Increasing knowledge of the operational principles of neurocognitive networks is likely to promote the advancement of cognitive theories, and to seed strategies for the enhancement of cognitive abilities.
大规模神经网络被认为是大脑实现认知功能的重要基础。倘若如此,那么在不了解认知的大规模神经网络(神经认知网络)如何运作的情况下,就不可能对认知有透彻的理解。必然地,这种理解需要深入了解网络运作的结构、功能和动态方面,它们之间紧密的交织可能是认知复杂性的原因。解剖结构知识是理解神经认知网络如何运作的基础。在系统发育和个体发育过程中确定的突触连接模式形成了一个脑区结构网络,使得广泛分布的脑区集合之间能够进行通信。神经认知网络的功能取决于以各种配置对解剖学上相连的皮质和皮质下区域进行选择性激活。大规模功能网络提供了协同处理,从而实现认知功能。神经认知网络功能的动态性与实时表达认知功能的相互作用脑区的动态变化模式相关。本文探讨了这样一种观点,即大脑中所有神经认知网络的结构、功能和动态特征的基本相似性导致它们按照共同的运作原则发挥作用。通过多个相互作用的皮质区域的协调相互约束形成神经背景,被视为所有认知功能的一个指导原则。对神经认知网络运作原则的了解不断增加,可能会促进认知理论的发展,并为提高认知能力提供策略。