Bond Peter J, Sansom Mark S P
Department of Biochemistry, University of Oxford, UK.
J Am Chem Soc. 2006 Mar 1;128(8):2697-704. doi: 10.1021/ja0569104.
Interactions of lipids are central to the folding and stability of membrane proteins. Coarse-grained molecular dynamics simulations have been used to reveal the mechanisms of self-assembly of protein/membrane and protein/detergent complexes for representatives of two classes of membrane protein, namely, glycophorin (a simple alpha-helical bundle) and OmpA (a beta-barrel). The accuracy of the coarse-grained simulations is established via comparison with the equivalent atomistic simulations of self-assembly of protein/detergent micelles. The simulation of OmpA/bilayer self-assembly reveals how a folded outer membrane protein can be inserted in a bilayer. The glycophorin/bilayer simulation supports the two-state model of membrane folding, in which transmembrane helix insertion precedes dimer self-assembly within a bilayer. The simulations also suggest that a dynamic equilibrium exists between the glycophorin helix monomer and dimer within a bilayer. The simulated glycophorin helix dimer is remarkably close in structure to that revealed by NMR. Thus, coarse-grained methods may help to define mechanisms of membrane protein (re)folding and will prove suitable for simulation of larger scale dynamic rearrangements of biological membranes.
脂质相互作用对于膜蛋白的折叠和稳定性至关重要。粗粒度分子动力学模拟已被用于揭示两类膜蛋白(即血型糖蛋白,一种简单的α-螺旋束;以及外膜蛋白A,一种β-桶)的代表性蛋白/膜和蛋白/去污剂复合物的自组装机制。通过与蛋白/去污剂胶束自组装的等效原子模拟进行比较,确定了粗粒度模拟的准确性。外膜蛋白A/双层自组装模拟揭示了折叠的外膜蛋白如何插入双层膜中。血型糖蛋白/双层模拟支持膜折叠的双态模型,其中跨膜螺旋插入先于双层膜内的二聚体自组装。模拟还表明,双层膜内血型糖蛋白螺旋单体和二聚体之间存在动态平衡。模拟的血型糖蛋白螺旋二聚体在结构上与核磁共振揭示的非常接近。因此,粗粒度方法可能有助于确定膜蛋白(再)折叠的机制,并将被证明适用于模拟生物膜更大规模的动态重排。