Joubert Olivier, Viero Gabriella, Keller Daniel, Martinez Eric, Colin Didier A, Monteil Henri, Mourey Lionel, Dalla Serra Mauro, Prévost Gilles
Laboratoire de Physiopathologie et d'Antibiologie Microbiennes, EA 3432, Institut de Bactériologie de la Faculté de Médecine (Université Louis Pasteur), Hôpitaux Universitaires de Strasbourg, 3 rue Koeberlé, F-67000 Strasbourg, France.
Biochem J. 2006 Jun 1;396(2):381-9. doi: 10.1042/BJ20051878.
The staphylococcal alpha-toxin and bipartite leucotoxins belong to a single family of pore-forming toxins that are rich in beta-strands, although the stoichiometry and electrophysiological characteristics of their pores are different. The different known structures show a common beta-sandwich domain that plays a key role in subunit-subunit interactions, which could be targeted to inhibit oligomerization of these toxins. We used several cysteine mutants of both HlgA (gamma-haemolysin A) and HlgB (gamma-haemolysin B) to challenge 20 heterodimers linked by disulphide bridges. A new strategy was developed in order to obtain a good yield for S-S bond formation and dimer stabilization. Functions of the pores formed by 14 purified dimers were investigated on model membranes, i.e. planar lipid bilayers and large unilamellar vesicles, and on target cells, i.e. rabbit and human red blood cells and polymorphonuclear neutrophils. We observed that dimers HlgA T28C-HlgB N156C and HlgA T21C-HlgB T157C form pores with similar characteristics as the wild-type toxin, thus suggesting that the mutated residues are facing one another, allowing pore formation. Our results also confirm the octameric stoichiometry of the leucotoxin pores, as well as the parity of the two monomers in the pore. Correctly assembled heterodimers thus constitute the minimal functional unit of leucotoxins. We propose amino acids involved in interactions at one of the two interfaces for an assembled leucotoxin.
葡萄球菌α毒素和双组分白细胞毒素属于富含β链的成孔毒素单一家族,尽管它们孔的化学计量和电生理特性有所不同。不同的已知结构显示出一个共同的β折叠结构域,该结构域在亚基 - 亚基相互作用中起关键作用,这可能是抑制这些毒素寡聚化的靶点。我们使用了HlgA(γ溶血素A)和HlgB(γ溶血素B)的几种半胱氨酸突变体来挑战由二硫键连接的20种异二聚体。为了获得良好的二硫键形成产率和二聚体稳定性,开发了一种新策略。在模型膜(即平面脂质双层和大单层囊泡)以及靶细胞(即兔和人红细胞及多形核中性粒细胞)上研究了14种纯化二聚体形成的孔的功能。我们观察到二聚体HlgA T28C - HlgB N156C和HlgA T21C - HlgB T157C形成的孔具有与野生型毒素相似的特征,因此表明突变残基彼此相对,允许形成孔。我们的数据还证实了白细胞毒素孔的八聚体化学计量以及孔中两个单体的奇偶性。正确组装的异二聚体因此构成了白细胞毒素的最小功能单元。我们提出了参与组装的白细胞毒素两个界面之一相互作用的氨基酸。