Bhatt Rajen B, Gopal M
Control Laboratories, II/214, Department of Electrical Engineering, Indian Institute of Technology - Delhi, Hauz Khas, New Delhim - 110016, India.
Int J Neural Syst. 2006 Feb;16(1):63-78. doi: 10.1142/S0129065706000470.
Fuzzy decision trees are powerful, top-down, hierarchical search methodology to extract human interpretable classification rules. However, they are often criticized to result in poor learning accuracy. In this paper, we propose Neuro-Fuzzy Decision Trees (N-FDTs); a fuzzy decision tree structure with neural like parameter adaptation strategy. In the forward cycle, we construct fuzzy decision trees using any of the standard induction algorithms like fuzzy ID3. In the feedback cycle, parameters of fuzzy decision trees have been adapted using stochastic gradient descent algorithm by traversing back from leaf to root nodes. With this strategy, during the parameter adaptation stage, we keep the hierarchical structure of fuzzy decision trees intact. The proposed approach of applying backpropagation algorithm directly on the structure of fuzzy decision trees improves its learning accuracy without compromising the comprehensibility (interpretability). The proposed methodology has been validated using computational experiments on real-world datasets.
模糊决策树是一种强大的、自顶向下的分层搜索方法,用于提取人类可解释的分类规则。然而,它们经常被批评学习准确率较低。在本文中,我们提出了神经模糊决策树(N-FDTs);一种具有类似神经参数自适应策略的模糊决策树结构。在前向循环中,我们使用任何标准归纳算法(如模糊ID3)构建模糊决策树。在反馈循环中,通过从叶节点到根节点反向遍历,使用随机梯度下降算法对模糊决策树的参数进行自适应调整。采用这种策略,在参数自适应阶段,我们保持模糊决策树的层次结构不变。直接在模糊决策树结构上应用反向传播算法的提议方法提高了其学习准确率,同时不影响其可理解性(可解释性)。所提出的方法已通过对真实世界数据集的计算实验得到验证。