Bhatt Rajen B, Gopal M
Control laboratories, II/214, Department of Electrical Engineering, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi-110016, India.
Int J Neural Syst. 2004 Dec;14(6):373-80. doi: 10.1142/S012906570400211X.
We consider the efficient initialization of structure and parameters of generalized Gaussian radial basis function (RBF) networks using fuzzy decision trees generated by fuzzy ID3 like induction algorithms. The initialization scheme is based on the proposed functional equivalence property of fuzzy decision trees and generalized Gaussian RBF networks. The resulting RBF network is compact, easy to induce, comprehensible, and has acceptable classification accuracy with stochastic gradient descent learning algorithm.
我们考虑使用由类似模糊ID3归纳算法生成的模糊决策树,对广义高斯径向基函数(RBF)网络的结构和参数进行有效初始化。该初始化方案基于所提出的模糊决策树与广义高斯RBF网络的函数等价特性。通过随机梯度下降学习算法,所得的RBF网络结构紧凑、易于归纳、可理解,并且具有可接受的分类精度。