Ramakrishnan Boopathy, Ramasamy Velavan, Qasba Pradman K
Structural Glycobiology Section, Nanobiology Program Center for Cancer Research, NCI-Frederick, Frederick, MD 21702, USA.
J Mol Biol. 2006 Apr 14;357(5):1619-33. doi: 10.1016/j.jmb.2006.01.088. Epub 2006 Feb 9.
During the catalytic cycle of beta1,4-galactosyltransferase-1 (Gal-T1), upon the binding of Mn(2+) followed by UDP-Gal, two flexible loops, a long and a short loop, change their conformation from open to closed. We have determined the crystal structures of a human M340H-Gal-T1 mutant in the open conformation (apo-enzyme), its Mn(2+) and Mn(2+)-UDP-Gal-bound complexes, and of a pentenary complex of bovine Gal-T1-Mn(2+)-UDP-GalNAc-Glc-alpha-lactalbumin. These studies show that during the conformational changes in Gal-T1, the coordination of Mn(2+) undergoes significant changes. It loses a coordination bond with a water molecule bound in the open conformation of Gal-T1 while forming a new coordination bond with another water molecule in the closed conformation, creating an active ground-state structure that facilitates enzyme catalysis. In the crystal structure of the pentenary complex, the N-acetylglucosamine (GlcNAc) moiety is found cleaved from UDP-GalNAc and is placed 2.7A away from the O4 oxygen atom of the acceptor Glc molecule, yet to form the product. The anomeric C1 atom of the cleaved GalNAc moiety has only two covalent bonds with its non-hydrogen atoms (O5 and C2 atoms), similar to either an oxocarbenium ion or N-acetylgalactal form, which are crystallographically indistinguishable at the present resolution. The structure also shows that the newly formed, metal-coordinating water molecule forms a hydrogen bond with the beta-phosphate group of the cleaved UDP moiety. This hydrogen bond formation results in the rotation of the beta-phosphate group of UDP away from the cleaved GalNAc moiety, thereby preventing the re-formation of the UDP-sugar during catalysis. Therefore, this water molecule plays an important role during catalysis in ensuring that the catalytic reaction proceeds in a forward direction.
在β1,4-半乳糖基转移酶-1(Gal-T1)的催化循环中,在结合Mn(2+) 随后结合UDP-Gal后,两个柔性环,一个长环和一个短环,其构象从开放变为闭合。我们已经确定了处于开放构象的人M340H-Gal-T1突变体(脱辅基酶)、其Mn(2+) 以及Mn(2+)-UDP-Gal结合复合物的晶体结构,以及牛Gal-T1-Mn(2+)-UDP-GalNAc-Glc-α-乳白蛋白的五元复合物的晶体结构。这些研究表明,在Gal-T1的构象变化过程中,Mn(2+) 的配位发生了显著变化。它失去了与在Gal-T1开放构象中结合的水分子的配位键,同时在闭合构象中与另一个水分子形成了新的配位键,形成了一个有利于酶催化的活性基态结构。在五元复合物的晶体结构中,发现N-乙酰葡糖胺(GlcNAc)部分从UDP-GalNAc上裂解下来,并位于距受体Glc分子的O4氧原子2.7埃处,尚未形成产物。裂解的GalNAc部分的异头C1原子与其非氢原子(O5和C2原子)只有两个共价键,类似于氧碳鎓离子或N-乙酰半乳糖醛形式,在目前的分辨率下,它们在晶体学上无法区分。该结构还表明,新形成的、与金属配位的水分子与裂解的UDP部分的β-磷酸基团形成氢键。这种氢键的形成导致UDP的β-磷酸基团从裂解的GalNAc部分旋转开,从而在催化过程中防止UDP-糖的重新形成。因此,这个水分子在催化过程中起着重要作用,确保催化反应朝着正向进行。