School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
Nat Commun. 2024 Sep 13;15(1):7925. doi: 10.1038/s41467-024-51081-7.
Glycan-mediated interactions play a crucial role in biology and medicine, influencing signalling, immune responses, and disease pathogenesis. However, the use of glycans in biosensing and diagnostics is limited by cross-reactivity, as certain glycan motifs can be recognised by multiple biologically distinct protein receptors. To address this specificity challenge, we report the enzymatic synthesis of a 150-member library of site-specifically fluorinated Lewis analogues ('glycofluoroforms') using naturally occurring enzymes and fluorinated monosaccharides. Subsequent incorporation of a subset of these glycans into nanoparticles or a microarray revealed a striking spectrum of distinct binding intensities across different proteins that recognise Lewis. Notably, we show that for two proteins with unique binding sites for Lewis, glycofluoroforms exhibited enhanced binding to one protein, whilst reduced binding to the other, with selectivity governed by fluorination patterns. We finally showcase the potential diagnostic utility of this approach in glycofluoroform-mediated bacterial toxin detection by lateral flow.
糖基介导的相互作用在生物学和医学中起着至关重要的作用,影响信号转导、免疫反应和疾病发病机制。然而,糖基在生物传感和诊断中的应用受到交叉反应性的限制,因为某些糖基结构可以被多种生物学上不同的蛋白质受体识别。为了解决这个特异性挑战,我们报告了使用天然存在的酶和氟化单糖,对 150 个成员的位点特异性氟化 Lewis 类似物(“糖氟化物”)文库进行酶促合成。随后将这些糖中的一部分掺入纳米颗粒或微阵列中,揭示了不同蛋白质识别 Lewis 时的截然不同的结合强度谱。值得注意的是,我们表明,对于两种具有独特 Lewis 结合位点的蛋白质,糖氟化物表现出对一种蛋白质的结合增强,而对另一种蛋白质的结合减弱,这种选择性受氟化模式的控制。我们最后通过侧向流动展示了这种方法在糖氟化物介导的细菌毒素检测中的潜在诊断应用。