Suppr超能文献

计算机辅助阅读软件与专家阅片者在CT结肠成像中对息肉的检测比较

Computer-assisted reader software versus expert reviewers for polyp detection on CT colonography.

作者信息

Taylor Stuart A, Halligan Steve, Burling David, Roddie Mary E, Honeyfield Lesley, McQuillan Justine, Amin Hamdam, Dehmeshki Jamshid

机构信息

Department of Intestinal Imaging, St. Mark's and Northwick Park Hospitals, Watford Rd., Harrow HA1 3UJ, United Kingdom.

出版信息

AJR Am J Roentgenol. 2006 Mar;186(3):696-702. doi: 10.2214/AJR.04.1990.

Abstract

OBJECTIVE

The purpose of our study was to assess the sensitivity of computer-assisted reader (CAR) software for polyp detection compared with the performance of expert reviewers.

MATERIALS AND METHODS

A library of colonoscopically validated CT colonography cases were collated and separated into training and test sets according to the time of accrual. Training data sets were annotated in consensus by three expert radiologists who were aware of the colonoscopy report. A subset of 45 training cases containing 100 polyps underwent batch analysis using ColonCAR version 1.2 software to determine the optimum polyp enhancement filter settings for polyp detection. Twenty-five consecutive positive test data sets were subsequently interpreted individually by each expert, who was unaware of the endoscopy report, and before generation of the annotated reference via an unblinded consensus interpretation. ColonCAR version 1.2 software was applied to the test cases, at optimized polyp enhancement filter settings, to determine diagnostic performance. False-positive findings were classified according to importance.

RESULTS

The 25 test cases contained 32 nondiminutive polyps ranging from 6 to 35 mm in diameter. The ColonCAR version 1.2 software identified 26 (81%) of 32 polyps compared with an average sensitivity of 70% for the expert reviewers. Eleven (92%) of 12 polyps > or = 10 mm were detected by ColonCAR version 1.2. All polyps missed by experts 1 (n = 4) and 2 (n = 3) and 12 (86%) of 14 polyps missed by expert 3 were detected by ColonCAR version 1.2. The median number of false-positive highlights per case was 13, of which 91% were easily dismissed.

CONCLUSION

ColonCAR version 1.2 is sensitive for polyp detection, with a clinically acceptable false-positive rate. ColonCAR version 1.2 has a synergistic effect to the reviewer alone, and its standalone performance may exceed even that of experts.

摘要

目的

本研究旨在评估计算机辅助阅片(CAR)软件在检测息肉方面的敏感性,并与专家阅片者的表现进行比较。

材料与方法

整理了一组经结肠镜检查验证的CT结肠成像病例库,并根据收集时间分为训练集和测试集。训练数据集由三位知晓结肠镜检查报告的专家放射科医生进行一致性标注。对包含100个息肉的45个训练病例子集使用ColonCAR 1.2版软件进行批量分析,以确定用于息肉检测的最佳息肉增强滤波设置。随后,由每位不知晓内镜检查报告的专家对25个连续的阳性测试数据集进行单独解读,然后通过非盲法一致性解读生成标注参考。将ColonCAR 1.2版软件应用于测试病例,采用优化后的息肉增强滤波设置,以确定诊断性能。根据重要性对假阳性结果进行分类。

结果

25个测试病例包含32个直径为6至35毫米的非微小息肉。ColonCAR 1.2版软件识别出了32个息肉中的26个(81%),而专家阅片者的平均敏感性为70%。ColonCAR 1.2版软件检测出了12个直径大于或等于10毫米的息肉中的11个(92%)。专家1漏诊的所有4个息肉、专家2漏诊的所有3个息肉以及专家3漏诊的14个息肉中的12个(86%)均被ColonCAR 1.2版软件检测到。每个病例的假阳性亮点中位数为13个,其中91%容易被排除。

结论

ColonCAR 1.2版软件在息肉检测方面具有敏感性,假阳性率在临床可接受范围内。ColonCAR 1.2版软件对阅片者具有协同作用,其独立性能甚至可能超过专家。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验