Suppr超能文献

使用三维流固耦合模型量化斑块结构和材料特性对人类动脉粥样硬化斑块应力分布的影响。

Quantifying effects of plaque structure and material properties on stress distributions in human atherosclerotic plaques using 3D FSI models.

作者信息

Tang Dalin, Yang Chun, Zheng Jie, Woodard Pamela K, Saffitz Jeffrey E, Sicard Gregorio A, Pilgram Thomas K, Yuan Chun

机构信息

Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA 01609, USA.

出版信息

J Biomech Eng. 2005 Dec;127(7):1185-94. doi: 10.1115/1.2073668.

Abstract

BACKGROUND

Atherosclerotic plaques may rupture without warning and cause acute cardiovascular syndromes such as heart attack and stroke. Methods to assess plaque vulnerability noninvasively and predict possible plaque rupture are urgently needed.

METHOD

MRI-based three-dimensional unsteady models for human atherosclerotic plaques with multi-component plaque structure and fluid-structure interactions are introduced to perform mechanical analysis for human atherosclerotic plaques.

RESULTS

Stress variations on critical sites such as a thin cap in the plaque can be 300% higher than that at other normal sites. Large calcification block considerably changes stress/strain distributions. Stiffness variations of plaque components (50% reduction or 100% increase) may affect maximal stress values by 20-50%. Plaque cap erosion causes almost no change on maximal stress level at the cap, but leads to 50% increase in maximal strain value.

CONCLUSIONS

Effects caused by atherosclerotic plaque structure, cap thickness and erosion, material properties, and pulsating pressure conditions on stress/strain distributions in the plaque are quantified by extensive computational case studies and parameter evaluations. Computational mechanical analysis has good potential to improve accuracy of plaque vulnerability assessment.

摘要

背景

动脉粥样硬化斑块可能毫无征兆地破裂,引发急性心血管综合征,如心脏病发作和中风。因此迫切需要无创评估斑块易损性并预测可能的斑块破裂的方法。

方法

引入基于磁共振成像(MRI)的具有多成分斑块结构和流固相互作用的人体动脉粥样硬化斑块三维非稳态模型,对人体动脉粥样硬化斑块进行力学分析。

结果

斑块中薄帽等关键部位的应力变化可能比其他正常部位高300%。大的钙化块会显著改变应力/应变分布。斑块成分的刚度变化(降低50%或增加100%)可能使最大应力值改变20 - 50%。斑块帽侵蚀几乎不会使帽处的最大应力水平发生变化,但会使最大应变值增加50%。

结论

通过广泛的计算案例研究和参数评估,量化了动脉粥样硬化斑块结构、帽厚度和侵蚀、材料特性以及脉动压力条件对斑块内应力/应变分布的影响。计算力学分析在提高斑块易损性评估准确性方面具有良好潜力。

相似文献

3
Mechanics of Atherosclerotic Plaques: Effect of Heart Rate.
Cardiovasc Eng Technol. 2019 Jun;10(2):344-353. doi: 10.1007/s13239-019-00413-6. Epub 2019 Apr 4.
4
3D MRI-based multicomponent FSI models for atherosclerotic plaques.
Ann Biomed Eng. 2004 Jul;32(7):947-60. doi: 10.1023/b:abme.0000032457.10191.e0.
5
Does microcalcification increase the risk of rupture?
Proc Inst Mech Eng H. 2013 May;227(5):588-99. doi: 10.1177/0954411913479530. Epub 2013 Mar 6.
10
Nonlinear multiscale analysis of coronary atherosclerotic vulnerable plaque artery: fluid-structural modeling with micromechanics.
Biomech Model Mechanobiol. 2021 Oct;20(5):1889-1901. doi: 10.1007/s10237-021-01483-z. Epub 2021 Jun 30.

引用本文的文献

2
Patient-Specific Numerical Simulations of Coronary Artery Hemodynamics and Biomechanics: A Pathway to Clinical Use.
Cardiovasc Eng Technol. 2024 Oct;15(5):503-521. doi: 10.1007/s13239-024-00731-4. Epub 2024 May 6.
3
3D reconstruction of coronary artery bifurcations from intravascular ultrasound and angiography.
Sci Rep. 2023 Aug 10;13(1):13031. doi: 10.1038/s41598-023-40257-8.
5
A spatiotemporal analysis of the left coronary artery biomechanics using fluid-structure interaction models.
Med Biol Eng Comput. 2023 Jun;61(6):1533-1548. doi: 10.1007/s11517-023-02791-5. Epub 2023 Feb 15.
6
The Need to Shift from Morphological to Structural Assessment for Carotid Plaque Vulnerability.
Biomedicines. 2022 Nov 24;10(12):3038. doi: 10.3390/biomedicines10123038.
7
Study of Non-Newtonian biomagnetic blood flow in a stenosed bifurcated artery having elastic walls.
Sci Rep. 2021 Dec 13;11(1):23835. doi: 10.1038/s41598-021-03426-1.
9
Stress-Relaxation and Cyclic Behavior of Human Carotid Plaque Tissue.
Front Bioeng Biotechnol. 2020 Feb 11;8:60. doi: 10.3389/fbioe.2020.00060. eCollection 2020.

本文引用的文献

2
3D MRI-based multicomponent FSI models for atherosclerotic plaques.
Ann Biomed Eng. 2004 Jul;32(7):947-60. doi: 10.1023/b:abme.0000032457.10191.e0.
3
Characterization of the atherosclerotic carotid bifurcation using MRI, finite element modeling, and histology.
Ann Biomed Eng. 2004 Jul;32(7):932-46. doi: 10.1023/b:abme.0000032456.16097.e0.
4
Evolving concepts in the triad of atherosclerosis, inflammation and thrombosis.
J Thromb Thrombolysis. 2004 Feb;17(1):35-44. doi: 10.1023/B:THRO.0000036027.39353.70.
5
Identification of vulnerable atherosclerotic plaques.
Expert Rev Cardiovasc Ther. 2003 Sep;1(3):353-65. doi: 10.1586/14779072.1.3.353.
7
From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II.
Circulation. 2003 Oct 14;108(15):1772-8. doi: 10.1161/01.CIR.0000087481.55887.C9.
8
From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I.
Circulation. 2003 Oct 7;108(14):1664-72. doi: 10.1161/01.CIR.0000087480.94275.97.
9
On the sensitivity of wall stresses in diseased arteries to variable material properties.
J Biomech Eng. 2003 Feb;125(1):147-55. doi: 10.1115/1.1537736.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验