Tang Dalin, Yang Chun, Zheng Jie, Woodard Pamela K, Saffitz Jeffrey E, Sicard Gregorio A, Pilgram Thomas K, Yuan Chun
Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA 01609, USA.
J Biomech Eng. 2005 Dec;127(7):1185-94. doi: 10.1115/1.2073668.
Atherosclerotic plaques may rupture without warning and cause acute cardiovascular syndromes such as heart attack and stroke. Methods to assess plaque vulnerability noninvasively and predict possible plaque rupture are urgently needed.
MRI-based three-dimensional unsteady models for human atherosclerotic plaques with multi-component plaque structure and fluid-structure interactions are introduced to perform mechanical analysis for human atherosclerotic plaques.
Stress variations on critical sites such as a thin cap in the plaque can be 300% higher than that at other normal sites. Large calcification block considerably changes stress/strain distributions. Stiffness variations of plaque components (50% reduction or 100% increase) may affect maximal stress values by 20-50%. Plaque cap erosion causes almost no change on maximal stress level at the cap, but leads to 50% increase in maximal strain value.
Effects caused by atherosclerotic plaque structure, cap thickness and erosion, material properties, and pulsating pressure conditions on stress/strain distributions in the plaque are quantified by extensive computational case studies and parameter evaluations. Computational mechanical analysis has good potential to improve accuracy of plaque vulnerability assessment.
动脉粥样硬化斑块可能毫无征兆地破裂,引发急性心血管综合征,如心脏病发作和中风。因此迫切需要无创评估斑块易损性并预测可能的斑块破裂的方法。
引入基于磁共振成像(MRI)的具有多成分斑块结构和流固相互作用的人体动脉粥样硬化斑块三维非稳态模型,对人体动脉粥样硬化斑块进行力学分析。
斑块中薄帽等关键部位的应力变化可能比其他正常部位高300%。大的钙化块会显著改变应力/应变分布。斑块成分的刚度变化(降低50%或增加100%)可能使最大应力值改变20 - 50%。斑块帽侵蚀几乎不会使帽处的最大应力水平发生变化,但会使最大应变值增加50%。
通过广泛的计算案例研究和参数评估,量化了动脉粥样硬化斑块结构、帽厚度和侵蚀、材料特性以及脉动压力条件对斑块内应力/应变分布的影响。计算力学分析在提高斑块易损性评估准确性方面具有良好潜力。